Acta Limnologica Brasiliensia
https://www.actalb.org/article/doi/10.1590/S2179-975X5121
Acta Limnologica Brasiliensia
Original Article

Natural and anthropic inputs of nutrients in hydrographic basins of reservoirs in the Brazilian semiarid

Aportes naturais e antrópicos de nutrientes em bacias hidrográficas de reservatórios do semiárido brasileiro

Herbster Ranielle Lira De-Carvalho; Gustavo Gonzaga Henry-Silva

Downloads: 0
Views: 1059

Abstract

Abstract:: Aim: Estimate the input of loads of N and P emitted by natural (atmospheric deposition and soil denudation) and anthropogenic (agriculture, livestock and sewage) factors for the hydrographic basins of two reservoirs in the Brazilian semiarid region (Mendubim and Umari).

Methods: In the present work, we use georeferenced data provided by official agencies, data presented in academic papers, field samples and laboratory analysis of emission factors in the estimates of nitrogen and phosphorus inputs in reservoir basins of Brazilian semiarid region.

Results: Soil denudation was identified as the main natural source of N and atmospheric deposition as the main source of P in both basins. Among the anthropogenic sources, the main source of N and P, for the two basins, was livestock. The total loads (natural and anthropogenic) of N (579.01 tonne. year-1) and P (136.35 tonne. year-1) received by the Umari basin was, respectively, 43.90% and 22.10% higher than those received by Mendubim, with a predominance of anthropogenic sources in both nitrogen and phosphorus emission.

Conclusions: The results showed the importance of monitoring human activities that can enhance nutrient inputs, such as nitrogen and phosphorus, in basins of the Brazilian semiarid region. The quantification of the emission factors analyzed here can be a tool in the development of strategies to mitigate the problems that high concentrations of N and P can bring to the quality and use of water in semiarid reservoirs.

Keywords

soil denudation, eutrophication, anthropogenic sources, natural sources, livestock

Resumo

Resumo:: Objetivo: Estimar o aporte de cargas de N e P emitidas por fatores naturais (deposição atmosférica e desnudação do solo) e antrópicos (agricultura, pecuária e águas servidas) para as bacias de contribuição de dois reservatórios do semiárido brasileiro (Mendubim e Umari).

Métodos: No presente trabalho, utilizamos dados georreferenciados disponibilizados por órgãos oficiais, dados apresentados em trabalhos acadêmicos, coletas de campo e análise laboratorial nas estimativas dos aportes de nitrogênio e fósforo para as bacias hidrográficas de dois reservatórios semiárido brasileiro.

Resultados: O desnudamento do solo foi identificado como a principal fonte natural de N e a deposição atmosférica como a principal fonte de P, em ambas as bacias de contribuição. Dentre as fontes antrópicas, a principal fonte de N e P, para as duas bacias, foi a pecuária. As cargas totais (naturais e antrópicas) de N (579,01 tonne.ano-1) e P (136,35 tonne.ano-1) recebidas pela bacia de contribuição de Umari foram, respectivamente, 43,9% e 22,1% superiores às recebidas por Mendubim, com predominância de fontes antropogênicas tanto na emissão de nitrogênio quanto de fósforo.

Conclusões: Os resultados mostraram a importância do monitoramento de atividades antrópicas que possam potencializar aportes de nutrientes, como nitrogênio e fósforo, em bacias do semiárido brasileiro. A quantificação dos fatores de emissão aqui analisados ​​pode ser uma ferramenta no desenvolvimento de estratégias para mitigar os problemas que altas concentrações de N e P podem trazer para a qualidade e uso da água em reservatórios do semiárido.
 

Palavras-chave

desnudamento do solo, eutrofização, fontes antropogênicas, fontes naturais, pecuária

References

Alves, A.U., Oliveira, A.P., Alves, A.U., Dornelas, C.S.M., Alves, E.U., Cardoso, E.A., Oliveira, A.N.P., & Cruz, I.S., 2008. Lima beans production and economic revenue as function of organic and mineral fertilization. Hortic. Bras. 26(2), 251-254. http://dx.doi.org/10.1590/S0102-05362008000200024.

Association of Official Analytical Chemists - AOAC, 2005. Official methods of analysis (18th ed.). Gaithersburg: AOAC International.

Bouwman, A.F., Lee, D.S., Asman, W.A.H., Dentener, F.J., Van Der Hoek, K.W., & Olivier, J.G.J., 1997. A global high-resolution inventory for ammonia. Global Biogeochem. Cycles 11(4), 561-587. http://dx.doi.org/10.1029/97GB02266.

Brannan, K.M., Mostaghimi, S., Mcclellan, P.W., & Inamdar, S., 2000. Animal waste BMP Impacts on sediment and nutrient losses in runoff from the owl run watershed. Trans. ASAE 43(5), 1155-1166. http://dx.doi.org/10.13031/2013.3008.

Cacho, J.C.S., Moura, R.S.T., & Henry-Silva, G.G., 2020. Influence of Nile tilapia (Oreochromis niloticus) fish farming in net cages on the nutrient and particulate matter sedimentation rates in Umari reservoir, Brazilian semi-arid. Aquacult. Rep. 17, 100358. http://dx.doi.org/10.1016/j.aqrep.2020.100358.

Chantara, S., & Chunsuk, N., 2008. Comparison of wet-only and bulk deposition at Chiang Mai (Thailand) based on rainwater chemical composition. Atmos. Environ. 42(22), 5511-5518. http://dx.doi.org/10.1016/j.atmosenv.2008.03.022.

Chen, X., Strokal, M., Van Vliet, M.T.H., Stuiver, J., Wang, M., Bai, Z., Ma, L., & Kroeze, C., 2019. Multi-scale modeling of nutrient pollution in the rivers of China. Environ. Sci. Technol. 53(16), 9614-9625. PMid:31321972. http://dx.doi.org/10.1021/acs.est.8b07352.

Coelho, A.M., Waquil, J.M., Karam, D., & Casela, C.R., 2002. Seja o doutor do seu sorgo. Inf. Agron. 14(100), 1-12.

Cóser, A.C.F., & Pereira, A.V., 2001. Forrageiras para corte e pastejo. Juiz de Fora: Embrapa Gado de Leite, Circular Técnica, no. 66.

Cunha, J.S.A., Feliciano, A.L.P., Silva, E.A., & Marangon, L.C., 2019. Influence of hypsometry in the occupation of semiarid areas. J. Exp. Agric. Int. 35(2), 1-9. http://dx.doi.org/10.9734/jeai/2019/v35i230198.

De Paula Filho, F.J., Marins, R.V., & Lacerda, L.D., 2015. Natural and anthropogenic emissions of N and P to the Parnaíba River Delta in NE Brazil. Estuar. Coast. Shelf Sci. 166, 34-44. http://dx.doi.org/10.1016/j.ecss.2015.03.020.

De Paula Filho, F.J., Sampaio, A.D.S., Menezes, J.M.C., Costa, C.T.F., & Santiago, M.O., 2019. Land uses, Nitrogen and Phosphorus estimated fluxes in a Brazilian semiarid. J. Arid Environ. 163, 41-49. http://dx.doi.org/10.1016/j.jaridenv.2019.01.001.

De-Carvalho, H.R.L., & Henry-Silva, G.G., 2020. Caracterização morfométrica das bacias de contribuição dos reservatórios Umari e Mendubim, semiárido do Rio Grande do Norte, Brasil. Rev. Geogr. 37(3), 221-238. http://dx.doi.org/10.51359/2238-6211.2020.246125.

Eimers, M.C., Hillis, N.P., & Watmough, S.A., 2018. Phosphorus deposition in a low-Phosphorus landscape: sources, accuracy and contribution to declines in surface water P. Ecosystems 21(4), 782-794. http://dx.doi.org/10.1007/s10021-017-0184-2.

Fernandes, A.M., Conceicao, F.T., & Mortatti, J., 2020. Hydrochemistry applied to assess the chemical weathering and soil removal rates in the Sorocaba River basin, São Paulo State. Brazilian Journal of Geology, 50, e20190030 https://10.1590/2317-4889202020190030.

Food and Agriculture Organization of the United Nations - FAO, 2017. Water for sustainable food and agriculture. Rome.

Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., & Cosby, B.J., 2003. The nitrogen cascade. Bioscience 53(4), 241-356. http://dx.doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2.

Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., & Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878), 889-892. PMid:18487183. http://dx.doi.org/10.1126/science.1136674.

Grafton, R.Q., Williams, J., & Jiang, Q., 2015. Food and water gaps to 2050: preliminary results from the global food and water system (GFWS) platform. Food Secur. 7(2), 209-220. http://dx.doi.org/10.1007/s12571-015-0439-8.

Guilherme, R.D.F., Lima, A.M.C., Alves, J.R.A., Costa, D.F., Pinheiro, R.R., Alves, F.S.F., Azevedo, S.S., & Alves, C.J., 2017. Characterization and typology of sheep and goat production systems in the State of Paraíba, a semi-arid region of northeastern Brazil. Semina: Ciênc. Agrár. 38(4), 2163. http://dx.doi.org/10.5433/1679-0359.2017v38n4p2163.

Henry-Silva, G.G., & Camargo, A.F.M., 2022. Aspectos econômicos, sociais e ambientais da bacia hidrográfica do Rio Apodi-Mossoró. In: Henry-Silva, G.G., & Camargo A.F.M., eds. A bacia do rio Apodi-Mossoró: aspectos ambientais, sociais e econômicos de uma bacia hidrográfica no semiárido do Rio Grande do Norte. Mossoró: EDUFERSA, 57-82.

Henry-Silva, G.G., Attayde, J.L., & Melo-Junior, H.N., 2019. Extreme drought events and the sustainability of fish farming in net cages in reservoirs of the semi-arid northeastern region in Brazil. Acta Limnol. Bras. 31, e112. http://dx.doi.org/10.1590/s2179-975x7519.

Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z., Guo, W., Li, Z., Zhang, L., Liu, Y., Yu, H., He, Y., Xie, Y., Guan, X., Ji, M., Lin, L., Wang, S., Yan, H., & Wang, G., 2017a. Dryland climate change: recent progress and challenges. Rev. Geophys. 55(3), 719-778. http://dx.doi.org/10.1002/2016RG000550.

Huang, J., Xu, C., Ridoutt, B.G., Wang, X., & Ren, P., 2017b. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 159, 171-179. http://dx.doi.org/10.1016/j.jclepro.2017.05.008.

Instituto Brasileiro de Geografia e Estatística - IBGE, 2017. Censo agropecuário [online]. Retrieved in 2019, April 4, from https://censos.ibge.gov.br/agro/2017/resultados-censo-agro-2017.html

Instituto Brasileiro de Pesqueisas Espaciais - INPE, 2008. TOPODATA - Banco de Dados Geomorfométricos do Brasil (Online). Retrieved in 2019, January 20, from http://www.dsr.inpe.br/topodata/index.php

Instituto Brasileiro de Pesqueisas Espaciais - INPE, 2009. AMBDATA: variáveis ambientais para modelagem de distribuição de espécies (Online). Retrieved in 2019, March 1, from http://www.dpi.inpe.br/Ambdata/mapa_solos.php

Jacomine, P.K.T., Silva, F.B.R., Formiga, R.A., Almeida, J.C., Beltrão, V. A., Pessoa, S.C.P., & Ferreira, R.C., 1971. Levantamento exploratório: reconhecimento de solos do estado do Rio Grande do Norte. Recife: SUDENE-DRN.

Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Nõges, T., Nõges, P., Attayde, J.L., Zohary, T., Coppens, J., Bucak, T., Menezes, R.F., Freitas, F.R.S., Kernan, M., Søndergaard, M., & Beklioğlu, M., 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750(1), 201-227. http://dx.doi.org/10.1007/s10750-014-2169-x.

Kelly, P.T., Vanni, M.J., & Renwick, W.H., 2018. Assessing uncertainty in annual nitrogen, phosphorus, and suspended sediment load estimates in three agricultural streams using a 21-year dataset. Environ. Monit. Assess. 190(2), 91. PMid:29354871. http://dx.doi.org/10.1007/s10661-018-6470-4.

Khatri, N., & Tyagi, S., 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8(1), 23-29. http://dx.doi.org/10.1080/21553769.2014.933716.

Köppen, W., 1936. Das geographische system der klimate. In: Köppen, W. & Geiger, R., eds. Handbuch der klimatologie. Berlin: Gebrüder Bornträger, 1-44.

Koutroulis, A.G., 2019. Dryland changes under different levels of global warming. Sci. Total Environ. 655, 482-511. PMid:30476829. http://dx.doi.org/10.1016/j.scitotenv.2018.11.215.

Lacerda, L.D., Molisani, M.M., Sena, D., & Maia, L.P., 2008. Estimating the importance of natural and anthropogenic sources on N and P emission to estuaries along the Ceará State Coast NE Brazil. Environ. Monit. Assess. 141(1-3), 149-164. http://dx.doi.org/10.1007/s10661-007-9884-y.

Lacerda, L.D., Santos, J.A., Marins, R.V., & Silva, F.A.T.F., 2018. Limnology of the largest multi-use artificial reservoir in NE Brazil: the Castanhão Reservoir, Ceará State. An. Acad. Bras. Cienc. 90(2, Suppl.1), 2074-2095. PMid:30133571. http://dx.doi.org/10.1590/0001-3765201820180085.

Leip, A., Billen, G., Garnier, J., Grizzetti, B., Lassaletta, L., Reis, S., Simpson, D., Sutton, M.A., de Vries, W., Weiss, F., & Westhoek, H., 2015. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10(11), 115004. http://dx.doi.org/10.1088/1748-9326/10/11/115004.

Li, Y., Chen, Y., & Li, Z., 2019. Dry/wet pattern changes in global dryland areas over the past six decades. Global Planet. Change 178, 184-192. http://dx.doi.org/10.1016/j.gloplacha.2019.04.017.

Lima Neto, I.E., Wiegand, M.C., & Araújo, J.C.D., 2011. Sediment redistribution due to a dense reservoir network in a large semi-arid Brazilian basin. Hydrol. Sci. J. 56(2), 319-333. http://dx.doi.org/10.1080/02626667.2011.553616.

Maldonado, F.D., Santos, J.D., & De Carvalho, V.C., 2002. Land use dynamics in the semi-arid region of Brazil (Quixaba, PE): characterization by principal component analysis (PCA). Int. J. Remote Sens. 23(23), 5005-5013. http://dx.doi.org/10.1080/0143116021000013313.

Malveira, V., Araújo, J.C., & Güntner, A., 2012. Hydrological impact of a high-density reservoir network in semiarid northeastern Brazil. J. Hydrol. Eng. 17(1), 109-117. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000404.

Marengo, J.A., Cunha, A.P.M.A., Nobre, C.A., Ribeiro Neto, G.G., Magalhaes, A.R., Torres, R.R., Sampaio, G., Alexandre, F., Alves, L.M., Cuartas, L.A., Deusdará, K.R.L., & Álvala, R.C.S., 2020. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C. Nat. Hazards 103(2), 2589-2611. http://dx.doi.org/10.1007/s11069-020-04097-3.

Mello, K., Taniwaki, R.H., Paula, F.R., Valente, R.A., Randhir, T.O., Macedo, D.R., Leal, C.G., Rodrigues, C.B., & Hughes, R.M., 2020. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J. Environ. Manage. 270, 110879. PMid:32721318. http://dx.doi.org/10.1016/j.jenvman.2020.110879.

Mendes, M.A.S., Farias, C.M.B.D., & Silva, D.J., 2010. Sistema de produção de melancia (Online). Embrapa Semiárido. Retrieved in 2019, March 1, from https://sistemasdeproducao.cnptia.embrapa.br

Moura, R.S.T., Valenti, W.C., & Henry-Silva, G.G., 2016. Sustainability of Nile tilapia net-cage culture in a reservoir in a semi-arid region. Ecol. Indic. 66, 574-582. http://dx.doi.org/10.1016/j.ecolind.2016.01.052.

Organization for Economic Co-operation and Development Environmental - OECD, 2012. Outlook to 2050. Paris: OECD Publishing.

Paula, F.C.F., Lacerda, L.D., Marins, R.V., Aguiar, J.E., Ovalle, Á.R.C., & Falcão Filho, C.A.T., 2010. Natural and anthropogenic emissions of metals and nutrients to the lower contas river basin, Bahia state, Brazil. Quim. Nova 33(1), 70-75. http://dx.doi.org/10.1590/S0100-40422010000100014.

Pinheiro Junior, C.R., Pereira, M.G., Souza, O.F., & Beutler, S.J., 2019. Can topography affect the restoration of soil properties after deforestation in a semiarid ecosystem? J. Arid Environ. 162, 45-52. http://dx.doi.org/10.1016/j.jaridenv.2018.11.004.

Rebouças, C.A.M., Portela, J.C., Sobrinho, F.E., Cavalcante, J.S.J., Silva, M.L.N., & Gondim, J.E.F., 2014. Caracterização física, química e morfológica do solo em várzea do município de Florânia, RN. Agropecu Cient Semiárido (Online), 10(1), 134-142. Retrieved in 2019, March 1, from http://150.165.111.246/ojs-patos/index.php/ACSA

Ritter, D.F., Kochel, R.C., & Miller, J.R., 2006. Process geomorphology (4rd ed.). Boston: McGraw-Hill.

Rocha Junior, C.A.N., Costa, M.R.A., Menezes, R.F., Attayde, J.L., & Becker, V., 2018. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnol. Bras. 30(106), http://dx.doi.org/10.1590/s2179-975x2117.

Santos, C.A.G., Nascimento, T.V.M., & Silva, R.M., 2020. Analysis of forest cover changes and trends in the Brazilian semiarid region between 2000 and 2018. Environ. Earth Sci. 79(18), 418. http://dx.doi.org/10.1007/s12665-020-09158-1.

Santos, J.A., Marins, R.V., Aguiar, J.E., Challar, G., Silva, F.A.T.F., & Lacerda, L.D., 2016. Hydrochemistry and trophic state change in a large reservoir in the Brazilian northeast region under intense drought conditions. J. Limnol. 76(1), 41-51. http://dx.doi.org/10.4081/jlimnol.2016.1433.

Sharpley, A., 2016. Managing agricultural phosphorus to minimize water quality impacts. Sci. Agric. 73(1), 1-8. http://dx.doi.org/10.1590/0103-9016-2015-0107.

Silva Filho, E., Wasserman, J.C., & Lacerda, L.D., 1998. History of metal inputs recorded on sediment on sediments cores from environment. Cienc. Cult. 50(5), 374-376.

Silva, J.L.B., Moura, G.B.A., Silva, M.V., Lopes, P.M.O., Guedes, R.V.S., Silva, E.F.F., Ortiz, P.F.S., & Rodrigues, J.A.M., 2020. Changes in the water resources, soil use and spatial dynamics of Caatinga vegetation cover over semiarid region of the Brazilian Northeast. Remote Sens. Appl. Soc. Environ. 20(100372), 100372. http://dx.doi.org/10.1016/j.rsase.2020.100372.

Smil, V., 2004. World History and Energy. In: Cleveland, C.J., eds. Encyclopedia of energy. New York: Elsevier, 549-561. http://dx.doi.org/10.1016/B0-12-176480-X/00025-5.

Strassburg, B.B.N., Latawiec, A.E., Barioni, L.G., Nobre, C.A., da Silva, V.P., Valentim, J.F., Vianna, M., & Assad, E.D., 2014. When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Change 28(8497), 84-97. http://dx.doi.org/10.1016/j.gloenvcha.2014.06.001.

Summerfield, M.A., & Hulton, N.J., 1994. Natural controls of fluvial denudation rates in major world drainage basins. J. Geophys. Res. 99(B7), 13871-13883. http://dx.doi.org/10.1029/94JB00715.

Tamatamah, R.A., Hecky, R.E., & Duthie, H., 2005. The atmospheric deposition of phosphorus in Lake Victoria (East Africa). Biogeochemistry 73(2), 325-344. http://dx.doi.org/10.1007/s10533-004-0196-9.

Tanaka, M.O., Souza, A.L.T., Moschini, L.E., & Oliveira, A.K., 2016. Influence of watershed land use and riparian characteristics on biological indicators of stream water quality in southeastern Brazil. Agric. Ecosyst. Environ. 216, 333-339. http://dx.doi.org/10.1016/j.agee.2015.10.016.

The Intergovernmental Panel on Climate Change - IPCC, 2014. Central and South America. In: Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., Maccracken, S., Mastrandrea, P.R., & White, L.L., eds. Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. New York: Cambridge University Press, 1499-1566.

Toro-Mujica, P., Aguilar, C., Vera, R., Rivas, J., & García, A., 2015. Sheep production systems in the semi-arid zone: changes and simulated bio-economic performances in a case study in Central Chile. Livest. Sci. 180, 209-219. http://dx.doi.org/10.1016/j.livsci.2015.07.001.

Trepel, M., 2016. Towards ecohydrological nutrient management for river basin districts. Ecohydrol. Hydrobiol. 16(2), 92-98. http://dx.doi.org/10.1016/j.ecohyd.2016.03.001.

Uwizeye, A., De Boer, I.J.M., Opio, C.I., Schulte, R.P.O., Tempio, A.F.G., Teillard, F., Casu, F., Rulli, M., Galloway, J.N., Leip, A., Erisman, J.W., Robinson, T.P., Steinfeld, H., & Gerber, P.J., 2020. Nitrogen emissions along global livestock supply chains. Nat. Food 1(7), 437-446. http://dx.doi.org/10.1038/s43016-020-0113-y.

Vasconcelos, V.H.F., 2011. Emissões naturais e antrópicas de nitrogênio e fósforo para os principais açudes da bacia hidrográfica do Rio Seridó, RN [Dissertação de Mestrado em Ecologia]. Natal: Universidade Federal do Rio Grande do Norte.

von Blanckenburg, F.H.T., Hewawasam, T., & Kubik, P.W., 2004. Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka. J. Geophys. Res. 109(F3), 1-22. http://dx.doi.org/10.1029/2003JF000049.

Weiss, L., Thé, J., Winter, J., & Gharabaghi, B., 2018. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes. J. Air Waste Manag. Assoc. 68(10), 1025-1037. PMid:29667526. http://dx.doi.org/10.1080/10962247.2018.1463929.

Xu, R., Cai, Y., Wang, X., Li, C., Liu, Q., & Yang, Z., 2020. Agricultural nitrogen flow analysis in a watershed and implication for water pollution mitigation: a study in Beijing, China. J. Clean. Prod. 267(2), 122034. http://dx.doi.org/10.1016/j.jclepro.2020.122034.

Zebalos, C.H.S., Soares, E.R., Barbosa, C.L., Nogueira, A.E., & Queiroz, S.F., 2017. Calagem e adubação na cultura do meloeiro. Rev. Cient. Fac. Educ. Meio Ambient. 8(2), 91-102. http://dx.doi.org/10.31072/rcf.v8i2.587.

Zhang, X., Yi, Y., & Yang, Z., 2020. Nitrogen and phosphorus retention budgets of a semiarid plain basin under different human activity intensity. Sci. Total Environ. 703, 134813. PMid:31731160. http://dx.doi.org/10.1016/j.scitotenv.2019.134813.

Zhou, F., Zhan, X., Bo, Y., Paerl, H., Song, L., & Liu, X., 2020. Impacts of Nitrogen preposition on China’s lake ecosystems: taking lake Dianchi as an example. In: Liu, X., & Du, E., eds. Atmospheric reactive nitrogen in China. Singapore: Springer, 263-293. http://dx.doi.org/10.1007/978-981-13-8514-8_12.
 


Submitted date:
08/06/2021

Accepted date:
09/20/2022

Publication date:
11/17/2022

637675d1a9539520f952e2e2 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections