Acta Limnologica Brasiliensia
https://www.actalb.org/article/doi/10.1590/S2179-975X4422
Acta Limnologica Brasiliensia
Original Article

Effects of PET microplastics on the freshwater crustacean Daphnia similis Claus, 1976

Efeitos dos microplásticos de PET no crustáceo de água doce Daphnia similis Claus, 1976

Daniela Grijó de Castro; Ana Luiza Fonseca Destro; Eder Carlos Lopes Coimbra; Aurea Luiza Lemes da Silva; Ann Honor Mounteer

Downloads: 0
Views: 1130

Abstract

Abstract:: Aim: In this study, we investigated the effects of secondary PET microplastics (< 53 µm) on the Daphnia similis basic life-history parameters survival, age at first reproduction and total offspring number. We also analyzed D. similis enzymatic activity (superoxide dismutase, catalase and glutathione-S-transferase) at sub-effect concentrations.

Methods: We performed acute and chronic toxicity tests using six PET microplastics concentrations (0, 102, 103, 104, 105 and 106 part. mL-1). We also applied an exposure test to analyze superoxide dismutase, catalase and glutathione-S-transferase activities at sub-effect concentrations.

Results: D. similis mortality increased (LC50 = 1 x 105 part. mL-1), reproduction decreased (EC50 = 105 part. mL-1) and time to first offspring was delayed by 5 days at the highest microplastic concentration after 21 days exposure. Neither mortality nor alterations in superoxide dismutase, catalase or glutathione-S-transferase activities were detected after 48 h exposure. Microplastics adhered to D. similis body appendages, causing altered swimming behavior.

Conclusions: Lack of acute toxicity but occurrence of chronic effects serve as a warning for caution when concluding about microplastics non-toxicity in short-term tests. Microplastics had unexpected effects with important ecological implications. Our results contribute to fill the knowledge gaps on the effects of microplastic pollution on aquatic ecosystems, especially under long-term exposure.

Keywords

plastic, toxicity, polyethylene terephthalate, zooplankton

Resumo

Resumo:: Objetivo: Neste estudo, nós investigamos os efeitos de microplásticos secundários de PET (< 53 µm) nos parâmetros básicos da história de vida de Daphnia similis sobrevivência, idade na primeira reprodução e número total de descendentes. Nós também analisamos a atividade enzimática de D. similis (superóxido dismutase, catalase e glutationa-S-transferase) em concentrações de sub-efeito.

Métodos: Realizamos testes toxicológicos agudos e crônicos usando seis concentrações de microplásticos PET (0, 102, 103, 104, 105 e 106 part. mL-1). Também aplicamos um teste de exposição para analisar a atividade da superóxido dismutase, catalase e glutationa-S-transferase em concentrações de sub-efeito.

Resultados: A mortalidade de D. similis aumentou (CL50 = 1 x 105 part. mL-1), a reprodução reduziu (CE50 = 105 part. mL-1) e o tempo para a primeira prole foi atrasado em 5 dias na maior concentração de microplástico após 21 dias de exposição. Não foram identificadas mortalidade nem alterações na atividade da superóxido dismutase, catalase ou glutationa-S-transferase após 48 h de exposição. Os microplásticos se aderiram aos apêndices corporais de D. similis, causando alterado comportamento natatório.

Conclusões: A ausência de toxicidade aguda e a ocorrência de toxicidade crônica alertam para cautela ao concluir sobre a não toxicidade dos microplásticos em testes de curto prazo. Os microplásticos apresentaram efeitos inesperados com implicações ecológicas importantes. Nossos resultados contribuem para preencher as lacunas de conhecimento sobre os efeitos da poluição microplástica nos ecossistemas aquáticos, especialmente sob exposição a longo prazo.
 

Palavras-chave

plástico, toxicidade, polietileno tereftalato, zooplâncton

References

Allen, S., Allen, D., Phoenix, V.R., Le Roux, G., Durántez Jiménez, P., Simonneau, A., Binet, S., & Galop, D., 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12(5), 339-344. http://dx.doi.org/10.1038/s41561-019-0335-5.

Associação Brasileira de Normas Técnicas – ABNT, 2016. NBR 12713: Ecotoxicologia aquática – Toxicidade aguda – Método de ensaio com Daphnia spp (Crustacea, Cladocera). Rio de Janeiro: ABNT.

Barnes, D.K.A., Galgani, F., Thompson, R.C., & Barlaz, M., 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1526), 1985-1998. PMid:19528051. http://dx.doi.org/10.1098/rstb.2008.0205.

Brahney, J., Mahowald, N., Prank, M., Cornwell, G., Klimont, Z., Matsui, H., & Prather, K.A., 2021. Constraining the atmospheric limb of the plastic cycle. Proc. Natl. Acad. Sci. USA 118(16), e2020719118. PMid:33846251. http://dx.doi.org/10.1073/pnas.2020719118.

Canniff, P.M., & Hoang, T.C., 2018. Microplastic ingestion by Daphnia magna and its enhancement on algal growth. Sci. Total Environ. 633, 500-507. PMid:29579661. http://dx.doi.org/10.1016/j.scitotenv.2018.03.176.

Chew, L.L., Chong, V.C., Tanaka, K., & Sasekumar, A., 2012. Phytoplankton fuel the energy flow from zooplankton to small nekton in turbid mangrove waters. Mar. Ecol. Prog. Ser. 469, 7-24. http://dx.doi.org/10.3354/meps09997.

Cole, M., Lindeque, P., Fileman, E., Halsband, C., & Galloway, T.S., 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49(2), 1130-1137. PMid:25563688. http://dx.doi.org/10.1021/es504525u.

Cui, R., Kim, S.W., & An, Y.J., 2017. Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Sci. Rep. 7(1), 12095. PMid:28935955. http://dx.doi.org/10.1038/s41598-017-12299-2.

Dieterich, S., Bieligk, U., Beulich, K., Hasenfuss, G., & Prestle, J., 2000. Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation 101(1), 33-39. PMid:10618301. http://dx.doi.org/10.1161/01.CIR.101.1.33.

Ebert, D., 2022. Daphnia as a versatile model system in ecology and evolution. Evodevo 13(1), 16. http://dx.doi.org/10.1186/s13227-022-00199-0.

Eltemsah, Y.S., & Bøhn, T., 2019. Acute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia magna. Environ. Pollut. 254(Pt A), 112919. PMid:31394341. http://dx.doi.org/10.1016/j.envpol.2019.07.087.

Fahrenfeld, N.L., Arbuckle-Keil, G., Naderi Beni, N., & Bartelt-Hunt, S.L., 2019. Source tracking microplastics in the freshwater environment. TrAC - Trends Analyt. Chem. 112, 248-254. http://dx.doi.org/10.1016/j.trac.2018.11.030.

Figueiredo, G.M., & Vianna, T.M.P., 2018. Suspended microplastics in a highly polluted bay: abundance, size, and availability for mesozooplankton. Mar. Pollut. Bull. 135, 256-265. PMid:30301037. http://dx.doi.org/10.1016/j.marpolbul.2018.07.020.

Free, C.M., Jensen, O.P., Mason, S.A., Eriksen, M., Williamson, N.J., & Boldgiv, B., 2014. High-levels of microplastic pollution in a large, remote, mountain lake. Mar. Pollut. Bull. 85(1), 156-163. PMid:24973278. http://dx.doi.org/10.1016/j.marpolbul.2014.06.001.

Fu, Z., & Wang, J., 2019. Current practices and future perspectives of microplastic pollution in freshwater ecosystems in China. Sci. Total Environ. 691, 697-712. PMid:31325868. http://dx.doi.org/10.1016/j.scitotenv.2019.07.167.

Galgani, F., Oosterbaan, L., Poitou, I., Hanke, G., Thompson, R., Amato, E., Janssen, C., Galgani, F., Fleet, D., Van Franeker, J., Katsanevakis, S., & Maes, T., 2010. Marine strategy framework directive: Task Group 10 Report. Marine Litter. Italy: JRC European Commission, 1-37, Joint Report, no. 31210. http://dx.doi.org/10.2788/86941.

Habig, W.H., Pabst, M.J., & Jakoby, W.B., 1974. Glutathione S transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249(22), 7130-7139. PMid:4436300. http://dx.doi.org/10.1016/S0021-9258(19)42083-8.

Hadwan, M.H., & Abed, H.N., 2015. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief 6, 194-199. PMid:26862558. http://dx.doi.org/10.1016/j.dib.2015.12.012.

Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., & Purnell, P., 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179-199. PMid:29035713. http://dx.doi.org/10.1016/j.jhazmat.2017.10.014.

Hale, R.C., Seeley, M.E., La Guardia, M.J., Mai, L., & Zeng, E.Y., 2020. A global perspective on microplastics. J. Geophys. Res. Oceans 125(1), http://dx.doi.org/10.1029/2018JC014719.

Heindler, F.M., Alajmi, F., Huerlimann, R., Zeng, C., Newman, S.J., Vamvounis, G., & van Herwerden, L., 2017. Toxic effects of polyethylene terephthalate microparticles and Di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris. Ecotoxicol. Environ. Saf. 141, 298-305. PMid:28365455. http://dx.doi.org/10.1016/j.ecoenv.2017.03.029.

Heskett, M., Takada, H., Yamashita, R., Yuyama, M., Ito, M., Geok, Y.B., Ogata, Y., Kwan, C., Heckhausen, A., Taylor, H., Powell, T., Morishige, C., Young, D., Patterson, H., Robertson, B., Bailey, E., & Mermoz, J., 2012. Measurement of persistent organic pollutants (POPs) in plastic resin pellets from remote islands: toward establishment of background concentrations for International Pellet Watch. Mar. Pollut. Bull. 64(2), 445-448. PMid:22137935. http://dx.doi.org/10.1016/j.marpolbul.2011.11.004.

Jaikumar, G., Baas, J., Brun, N.R., Vijver, M.G., & Bosker, T., 2018. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. Environ. Pollut. 239, 733-740. PMid:29723823. http://dx.doi.org/10.1016/j.envpol.2018.04.069.

Jemec, A., Horvat, P., Kunej, U., Bele, M., & Kržan, A., 2016. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ. Pollut. 219, 201-209. PMid:27814536. http://dx.doi.org/10.1016/j.envpol.2016.10.037.

Jeong, C.B., Kang, H.M., Lee, M.C., Kim, D.H., Han, J., Hwang, D.S., Souissi, S., Lee, S.J., Shin, K.H., Park, H.G., & Lee, J.S., 2017. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci. Rep. 7, 41323. PMid:28117374. http://dx.doi.org/10.1038/srep41323.

Jeong, C.B., Won, E.J., Kang, H.M., Lee, M.C., Hwang, D.S., Hwang, U.K., Zhou, B., Souissi, S., Lee, S.J., & Lee, J.S., 2016. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont Rotifer (Brachionus koreanus). Environ. Sci. Technol. 50(16), 8849-8857. PMid:27438693. http://dx.doi.org/10.1021/acs.est.6b01441.

Jeong, J., & Choi, J., 2019. Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere 231, 249-255. PMid:31129406. http://dx.doi.org/10.1016/j.chemosphere.2019.05.003.

Jeyavani, J., Sibiya, A., Gopi, N., Mahboob, S., Al-Ghanim, K.A., Al-Misned, F., Ahmed, Z., Riaz, M.N., Palaniappan, B., Govindarajan, M., & Vaseeharan, B., 2023. Ingestion and impacts of water-borne polypropylene microplastics on Daphnia similis. Environ. Sci. Pollut. Res. Int. 30(5), 13483-13494. PMid:36136182. http://dx.doi.org/10.1007/s11356-022-23013-9.

Jones-Williams, K., Galloway, T., Cole, M., Stowasser, G., Waluda, C., & Manno, C., 2020. Close encounters - microplastic availability to pelagic amphipods in sub-antarctic and antarctic surface waters. Environ. Int., 140, 105792. http://dx.doi.org/10.1016/j.envint.2020.105792.

Khatmullina, L., & Isachenko, I., 2017. Settling velocity of microplastic particles of regular shapes. Mar. Pollut. Bull. 114(2), 871-880. PMid:27863879. http://dx.doi.org/10.1016/j.marpolbul.2016.11.024.

Kokalj, A.J., Kunej, U., & Skalar, T., 2018. Screening study of four environmentally relevant microplastic pollutants: Uptake and effects on Daphnia magna and Artemia franciscana. Chemosphere 208, 522-529. PMid:29890490. http://dx.doi.org/10.1016/j.chemosphere.2018.05.172.

Kosore, C., Ojwang, L., Maghanga, J., Kamau, J., Kimeli, A., Omukoto, J., Ngisiag’e, N., Mwaluma, J., Ong’ada, H., Magori, C., & Ndirui, E., 2018. Occurrence and ingestion of microplastics by zooplankton in Kenya’s marine environment: first documented evidence. Afr. J. Mar. Sci. 40(3), 225-234. http://dx.doi.org/10.2989/1814232X.2018.1492969.

Li, B., Wang, Z.W., Lin, Q.B., & Hu, C.Y., 2016. Study of the migration of stabilizer and plasticizer from polyethylene terephthalate into food simulants. J. Chromatogr. Sci. 54(6), 939-951. PMid:26941413. http://dx.doi.org/10.1093/chromsci/bmw025.

Liu, Z., Huang, Y., Jiao, Y., Chen, Q., Wu, D., Yu, P., Li, Y., Cai, M., & Zhao, Y., 2020. Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex. Aquat. Toxicol. 220, 105420. PMid:31986404. http://dx.doi.org/10.1016/j.aquatox.2020.105420.

Ma, H., Pu, S., Liu, S., Bai, Y., Mandal, S., & Xing, B., 2020. Microplastics in aquatic environments: toxicity to trigger ecological consequences. Environ. Pollut. 261, 114089. PMid:32062100. http://dx.doi.org/10.1016/j.envpol.2020.114089.

Maar, M., Nielsen, T.G., Gooding, S., Tönnesson, K., Tiselius, P., Zervoudaki, S., Christou, E., Sell, A., & Richardson, K., 2004. Trophodynamic function of copepods, appendicularians and protozooplankton in the late summer zooplankton community in the Skagerrak. Mar. Biol. 144(5), 917-933. http://dx.doi.org/10.1007/s00227-003-1263-9.

Materić, D., Holzinger, R., & Niemann, H., 2022. Nanoplastics and ultrafine microplastic in the Dutch Wadden Sea – The hidden plastics debris? Sci. Total Environ. 846, 157371. PMid:35863583. http://dx.doi.org/10.1016/j.scitotenv.2022.157371.

Ogonowski, M., Schür, C., Jarsén, Å., & Gorokhova, E., 2016. The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLoS One 11(5), e0155063. PMid:27176452. http://dx.doi.org/10.1371/journal.pone.0155063.

Organisation for Economic Co-operation and Development – OECD, 2012. Test No. 211: Daphnia magna Reproduction Test, Guidelines for the Testing of Chemicals, Section 2. Paris: OECD Publishing. https://doi.org/10.1787/9789264185203-en.

Parolini, M., De Felice, B., Gazzotti, S., Annunziata, L., Sugni, M., Bacchetta, R., & Ortenzi, M.A., 2020. Oxidative stress-related effects induced by micronized polyethylene terephthalate microparticles in the Manila clam. J. Toxicol. Environ. Health A 83(4), 168-179. PMid:32141411. http://dx.doi.org/10.1080/15287394.2020.1737852.

Peeken, I., Primpke, S., Beyer, B., Gütermann, J., Katlein, C., Krumpen, T., Bergmann, M., Hehemann, L., & Gerdts, G., 2018. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9(1), 1505. PMid:29692405. http://dx.doi.org/10.1038/s41467-018-03825-5.

Piccardo, M., Provenza, F., Grazioli, E., Cavallo, A., Terlizzi, A., & Renzi, M., 2020. PET microplastics toxicity on marine key species is influenced by pH, particle size and food variations. Sci. Total Environ. 715, 136947. PMid:32014774. http://dx.doi.org/10.1016/j.scitotenv.2020.136947.

Plastics Europe. (2019). Plastics - The Facts 2019. Retrieved in 2021, July 19, from https://plasticseurope.org/

Provenza, F., Piccardo, M., Terlizzi, A., & Renzi, M., 2020. Exposure to pet-made microplastics: particle size and pH effects on biomolecular responses in mussels. Mar. Pollut. Bull., 156, 111228. http://dx.doi.org/10.1016/j.marpolbul.2020.111228.

Tang, J., Wang, X., Yin, J., Han, Y., Yang, J., Lu, X., Xie, T., Akbar, S., Lyu, K., & Yang, Z., 2019. Molecular characterization of thioredoxin reductase in waterflea Daphnia magna and its expression regulation by polystyrene microplastics. Aquat. Toxicol. 208, 90-97. http://dx.doi.org/10.1016/j.aquatox.2019.01.001.

Vaz, V.P., Nogueira, D.J., Vicentini, D.S., & Matias, W.G., 2021. Can the sonication of polystyrene nanoparticles alter the acute toxicity and swimming behavior results for Daphnia magna? Environ. Sci. Pollut. Res. Int. 28(11), 14192-14198. PMid:33517532. http://dx.doi.org/10.1007/s11356-021-12455-2.

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A.D., Winther-Nielsen, M., & Reifferscheid, G., 2014. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ. Sci. Eur. 26(1), 12. PMid:28936382. http://dx.doi.org/10.1186/s12302-014-0012-7.

Weber, A., Scherer, C., Brennholt, N., Reifferscheid, G., & Wagner, M., 2018. PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environ. Pollut. 234, 181-189. PMid:29175683. http://dx.doi.org/10.1016/j.envpol.2017.11.014.

Weston, J. N. J., Carrillo-barragan, P., Linley, T. D., William, D. K., & Jamieson, A. J. (2020). New species of Eurythenes from hadal depths of the Mariana Trench, Pacific Ocean (Crustacea: Amphipoda). Zootaxa. 4748(1), 163-181. https://doi.org/10.11646/zootaxa.4748.1.9.

Wright, S.L., Thompson, R.C., & Galloway, T.S., 2013. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 178, 483-492. PMid:23545014. http://dx.doi.org/10.1016/j.envpol.2013.02.031.

Wu, D., Wang, T., Wang, J., Jiang, L., Yin, Y., & Guo, H., 2021. Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production. Sci. Total Environ. 761, 143265. PMid:33257060. http://dx.doi.org/10.1016/j.scitotenv.2020.143265.

Wu, P., Huang, J., Zheng, Y., Yang, Y., Zhang, Y., He, F., Chen, H., Quan, G., Yan, J., Li, T., & Gao, B., 2019. Environmental occurrences, fate, and impacts of microplastics. Ecotoxicol. Environ. Saf. 184, 109612. PMid:31476450. http://dx.doi.org/10.1016/j.ecoenv.2019.109612.

Xu, E.G., Cheong, R.S., Liu, L., Hernandez, L.M., Azimzada, A., Bayen, S., & Tufenkji, N., 2020. Primary and secondary plastic particles exhibit limited acute toxicity but chronic effects on Daphnia magna. Environ. Sci. Technol. 54(11), 6859-6868. PMid:32421333. http://dx.doi.org/10.1021/acs.est.0c00245.

Yang, C.Z., Yaniger, S.I., Jordan, V.C., Klein, D.J., & Bittner, G.D., 2011. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ. Health Perspect. 119(7), 989-996. PMid:21367689. http://dx.doi.org/10.1289/ehp.1003220.

Zhang, C., Pan, Z., Wang, S., Xu, G., & Zou, J., 2022. Size and concentration effects of microplastics on digestion and immunity of hybrid snakehead in developmental stages. Aquacult. Rep. 22, 100974. http://dx.doi.org/10.1016/j.aqrep.2021.100974.

Ziajahromi, S., Kumar, A., Neale, P.A., & Leusch, F.D.L., 2017. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ. Sci. Technol. 51(22), 13397-13406. PMid:29059522. http://dx.doi.org/10.1021/acs.est.7b03574.

Zimmermann, L., Dierkes, G., Ternes, T.A., Völker, C., & Wagner, M., 2019. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ. Sci. Technol. 53(19), 11467-11477. PMid:31380625. http://dx.doi.org/10.1021/acs.est.9b02293.
 


Submitted date:
06/08/2022

Accepted date:
03/13/2023

Publication date:
04/10/2023

64341017a9539550625f7533 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections