Acta Limnologica Brasiliensia
https://www.actalb.org/article/doi/10.1590/S2179-975X1822
Acta Limnologica Brasiliensia
Review Article

Overview of studies on ecosystem services in riparian zones: a systematic review

Panorama dos estudos sobre serviços ecossistêmicos em zonas ripárias: uma revisão sistemática

Rachel Bardy Prado; Gustavo Menezes Silva Damasceno; Fabiana de Gois Aquino

Downloads: 1
Views: 1971

Abstract

Abstract:: Aim: Riparian zones are highly complex ecosystems, located on the banks of water bodies, with a fundamental role in maintaining biodiversity and ecosystem services (ES). This study aimed to systematize the knowledge about studies on ES in riparian zones, emphasizing methodological aspects and pointing out gaps and opportunities to reinforce their importance.

Methods: The study was carried out based on literature review data over a period of 21 years (2000-2020), using Scopus and Web of Science databases. In the first stage, aspects of bibliometrics were analyzed, as well as the countries that published the most on the subject. In the second stage, the methodological aspects were analyzed (with emphasis on the integrated analysis of multiple ES, which looked at the landscape, adopted multiscale or carried out economic valuation).

Results: From 2000 to 2020, 6,969 publications were obtained from Scopus and 16,498 from Web of Science, applying the search terms riparian buffer or similar and 371 publications were obtained from Scopus and 1,512 from Web of Science applying ecosystem service and riparian zones or similar terms, with the USA being the country that most published about ES in riparian zones. From a total of 219 publications selected, the ES category most studied in riparian zones was Regulation (65%), followed by Support (16%), Provision (8%) and Cultural (2%). Publications that studied three or more ES corresponded to 9% of the analyzed publications. Approximately 10% of publications used methodological approaches with multiple ESs in an integrated way. Less than 10% of publications focused on economic valuation. Gaps and opportunities were identified concerning the relevance and methods for evaluating and valuing ESs in riparian zones.

Conclusions: Few studies used methodological approaches integrating different ES. That calls attention to the need to carry out more studies that analyze ES in riparian zones using an integrated and multiscale approach because that is how the components of the ecosystem interact and provide joint responses that may assist in decision making.

Keywords

integration, landscape, economic valuation, gaps, opportunities

Resumo

Resumo:: Objetivo: As zonas ripárias são ecossistemas de alta complexidade, localizados às margens de corpos hídricos, com papel fundamental na manutenção da biodiversidade e dos serviços ecossistêmicos (SE). Este estudo teve como objetivo sistematizar o conhecimento sobre os SE em zonas ripárias, visando identificar os aspectos metodológicos e apontar lacunas e oportunidades para reforçar a sua importância.

Métodos: O estudo foi realizado com base em dados da revisão da literatura durante um período de 21 anos (2000-2020), usando as bases Scopus e Web of Science. Na primeira etapa foram analisados aspectos da bibliometria, bem como os países que mais publicaram no tema. Na segunda etapa foram analisados os aspectos metodológicos (com ênfase na análise integrada de multiplos SE, que olharam para a paisagem, adotaram multiescalas ou realizaram valoração econômica).

Resultados: De 2000 a 2020, 6.969 publicações foram obtidas da base Scopus e 16.498 da Web of Science, aplicando os termos de busca zonas ripárias ou similares e 371 publicações foram obtidas da base Scopus e 1.512 da Web of Science aplicando os termos serviços ecossistêmicos e zonas riparias ou termos similares, sendo os EUA o país que mais publicou sobre ES em zonas ripárias no período analisado. De um total de 219 publicações, a categoria de SE mais estudada em zonas ripárias foi a de Regulação (65%), seguida de Suporte (16%), Provisão (8%) e Cultural (2%). As publicações que estudaram três ou mais SE corresponderam à 9% das publicações analisadas. Aproximadamente 10% das publicações utilizaram abordagens metodológicas com múltiplos SE de forma integrada. Menos de 10% das publicações focaram em valoração econômica. Lacunas e oportunidades foram identificados em relação à relevância e métodos para avaliação e valoração dos SE em zonas ripárias.

Conclusões: Notou-se que poucos estudos utilizaram abordagens metodológicas integrando diferentes SE, utlizando mutiescalas e fazendo a valoração econômica dos SE, o que chama a atenção para a necessidade de realizar mais estudos que analisem a oferta de ES por zonas ripárias de forma integrada, pois é de forma complexa e em diferentes escalas que os componentes do ecossistema interagem e fornecem respostas conjuntas capazes de auxiliar na tomada de decisões.
 

Palavras-chave

integração, paisagem, valoração econômica, lacunas, oportunidades

References

Aguiar Junior, T.R., & Parron, L.M., 2015. Indicadores de serviços ambientais hídricos e a contribuição da vegetação ripária para a qualidade de água. In: Parron, L.M., Garcia, J.R., Oliveira, E.B., Brown, G.G., & Prado, R.B., eds. Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica. Brasília: Embrapa.

Altier, L.S., Lowrance, R., Williams, R.G., Inamdar, S.P., Bosh, D.D., Sheridan, J.M., Hubbard, R.K., & Thomas, D.L., 2002. Riparian ecosystem management model: simulator for ecological processes in riparian zones. USA: United States Department of Agriculture, Agricultural Research Service, Conservation Research Report, 46.

Amatya, D.M., Douglas-Mankin, K.R., Williams, T.M., Skaggs, R.W., & Nettles, J.E., 2011. Advances in forest hydrology: challenges and opportunities. ASABE 54(6), 2049-2056. http://dx.doi.org/10.13031/2013.40672.

Angelstam, P. & Lazdinis, M., 2017. Tall herb sites as a guide for planning, maintenance and engineering of riparian continuous forest cover. Ecol. Eng. 103(Pt B), 470-477. https://doi.org/10.1016/j.ecoleng.2016.06.099.

Angradi, T.R., Launspach, J.J., Bolgrien, D.W., Bellinger, B.J., Starry, M.A., Hoffman, J.C., Trebitz, A.S., Sierszen, M.E., & Hollenhorst, T.P., 2016. Mapping ecosystem service indicators in a Great Lakes estuarine Area of Concern. J. Great Lakes Res. 42(3), 717-727. http://dx.doi.org/10.1016/j.jglr.2016.03.012.

Arnold, J.G., Harmel, R.D., Johnson, M.-V.V., Bingner, R., Strickland, T.C., Walbridge, M., Santhi, C., Diluzio, M., & Wang, X., 2014. Impact of the agricultural research service watershed assessment studies on the conservation effects assessment project cropland national assessment. J. Soil Water Conserv. 69(5), 137A-144A. http://dx.doi.org/10.2489/jswc.69.5.137A.

Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., & Jah, M.K., 2012. SWAT: model use, calibration, and validation. ASABE 55(41), 491-508. https://doi.org/10.13031/2013.42256.

Attanasio, C.M., Gandolfi, S., Zakia, M.J.B., Veniziani Junior, J.C.T., & Lima, W.P., 2012. A importância das áreas ripárias para a sustentabilidade hidrológica do uso da terra em microbacias hidrográficas. Bragantia 71(4), 493-501. http://dx.doi.org/10.1590/S0006-87052013005000001.

Biggs, T.W., Santiago, T.M.O., Sills, E., & Caviglia-Harris, J., 2019. The Brazilian Forest Code and riparian preservation areas: spatiotemporal analysis and implications for hydrological ecosystem services. Reg. Environ. Change 19(8), 2381-2394. http://dx.doi.org/10.1007/s10113-019-01549-w.

Bjorkland, R., Pringle, C.M., & Newton, B., 2001. A stream visual assessment protocol (SVAP) for riparian landowners. Environ. Monit. Assess. 68(2), 99-125. PMid:11411146. http://dx.doi.org/10.1023/A:1010743124570.

Brauman, K.A., Daily, G.C., Duarte, T.K., & Mooney, H.A., 2007. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour., 32, 67-98. https://doi.org/10.1146/annurev.energy.32.031306.102758.

Bren, L.J., 1993. Riparian zone, stream, and floodplain issues: a review. J. Hydrol. (Amst.) 150(2-4), 277-299. http://dx.doi.org/10.1016/0022-1694(93)90113-N.

Burdon, F.J., Ramberg, E., Sargac, J., Forio, M.A.E., de Saeyer, N., Mutinova, P.T., Moe, T.F., Pavelescu, M.O., Dinu, V., Cazacu, C., Witing, F., Kupilas, B., Grandin, U., Volk, M., Rîşnoveanu, G., Goethals, P., Friberg, N., Johnson, R.K., & McKie, B.G., 2020. Assessing the benefits of forested riparian zones: a qualitative index of riparian integrity is positively associated with ecological status in European streams. Water 12(4), 1178. http://dx.doi.org/10.3390/w12041178.

Busato, L., Boaga, J., Perri, M.T., Majone, B., Bellin, A., & Cassiani, G., 2019. Hydrogeophysical characterization and monitoring of the hyporheic and riparian zones: the Vermigliana Creek case study. Sci. Total Environ. 648, 1105-1120. PMid:30340257. http://dx.doi.org/10.1016/j.scitotenv.2018.08.179.

Cao, Y., & Natuhara, Y., 2020. Effect of Urbanization on vegetation in riparian area: plant communities in artificial and semi-natural habitats. Sustainability, 12(1), 204. https://doi.org/10.3390/su12010204.

Clerici, N., Paracchini, M.L., & Maes, J., 2014. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrol. Hydrobiol. 14(2), 107-120. http://dx.doi.org/10.1016/j.ecohyd.2014.01.002.

Cole, L.J., Brocklehurst, S., Robertson, D., Harrison, W., & McCracken, D.I., 2015. Riparian buffer strips: their role in the conservation of insect pollinators in intensive grassland systems. Agric. Ecosyst. Environ. 211, 207-220. http://dx.doi.org/10.1016/j.agee.2015.06.012.

Cole, L.J., Stockan, J., & Helliwell, R., 2020. Managing riparian buffer strips to optimize ecosystem services: a review. Agric. Ecosyst. Environ. 296, 106891. http://dx.doi.org/10.1016/j.agee.2020.106891.

Collentine, D., Johnsson, H., Larsson, P., Markensten, H., & Persson, K., 2015. Designing cost efficient buffer zone programs: an application of the FyrisSKZ tool in a Swedish catchment. Ambio 44(Suppl. 2), S311- S 318. PMid:25681987. http://dx.doi.org/10.1007/s13280-015-0627-y.

Comín, F.A., Beatriz, M., Ricardo, S., Felipe-Lucia, M.R., Jiménez, J.J., & Enrique, N., 2018. Prioritizing sites for ecological restoration based on ecosystem services. J. Appl. Ecol., 55(3), 1155-1163. https://doi.org/10.5061/dryad.8t5d4.

Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., & Belt, M.V.D., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387, 253-260. https://doi.org/10.1038/387253a0.

Costanza, R., De Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S., & Grasso, M., 2017. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1-16. http://dx.doi.org/10.1016/j.ecoser.2017.09.008.

Costanza, R., Kubiszewski, I., Ervin, D., Bluffstone, R., Boyd, J.M., Brown, D., Chang, H., Dujon, V., Granek, E., Polasky, S., Shandas, V., & Yeakley, A., 2011. Valuing ecological systems and services. F1000 Biol. Rep. 3, 14. PMid:21876725. http://dx.doi.org/10.3410/B3-14.

Da Motta, R.S., 1997. Manual para valoração econômica de recursos ambientais. Brasília: IPEA/MMA/PNUD/CNPQ.

Dahl, T.E., 1990. Wetland losses in the United States: 1780‘s to 1980’s [online]. Washington, DC: Department of The Interior, Fish and Wildlife Service. Retrieved in 2020, August 20, from https://www.fws.gov/wetlands/Documents/Wetlands-Losses-in-the-United-States-1780s-to-1980s.pdf

De Groot, R.S., Wilson, M.A., & Boumans, R.M.J., 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41(3), 393-408. http://dx.doi.org/10.1016/S0921-8009(02)00089-7.

De Sosa, L.L., Glanville, H.C., & Marshal, M.R., Prysor Williams, A., & Jones, D.L., 2018. Quantifying the contribution of riparian soils to the provision of ecosystem services. Sci. Total Environ., 624, 807-819. https://doi.org/10.1016/j.scitotenv.2017.12.179.

Del Tánago, M.G., & Jalón, D.G., 2006. Índice RQI para la valoración de las riberas fluviales en el contexto de la directiva marco del agua. Ing. Civ., 143, 97-108.

Denyer, D., & Tranfield, D., 2009. Producing a systematic review. In: Buchanan, D. A., & Bryman, A., eds. The SAGE handbook of organizational research methods. London: Sage Publications Ltd.

Dittrich, R., Ball, T., Wreford, A., Moran, D., & Spray, C.J., 2018. A cost-benefit analysis of afforestation as a climate change adaptation measure to reduce flood risk. J. Flood. Risk Manage. 12, e12482. https://doi.org/10.1111/jfr3.12482.

Dufour, S., Rodríguez-González, P.M., & Laslier, M., 2019. Tracing the scientific trajectory of riparian vegetation studies: main topics approaches and needs in a globally changing world. Sci. Total Environ. 653, 1168-1185. PMid:30759557. http://dx.doi.org/10.1016/j.scitotenv.2018.10.383.

Dybala, K.E., Matzek, V., Gardali, T., & Seavy, N.E., 2019. Carbon sequestration in riparian forests: a global synthesis and meta-analysis. Glob. Chang. Biol. 25(1), 57-67. PMid:30411449. http://dx.doi.org/10.1111/gcb.14475.

Francesconi, W., Srinivasan, R., Pérez-Miñana, E., Willcock, S.P., & Quintero, M., 2016. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: a systematic review. J. Hydrol. (Amst.) 535, 625-636. http://dx.doi.org/10.1016/j.jhydrol.2016.01.034.

Fu, B., Li, Y., Wang, Y., Zhang, B., Yin, S., Zhu, H., & Xing, Z., 2016. Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol. Indic. 69, 873-881. https://doi.org/10.1016/j.ecolind.2016.05.048.

Garcia, J.R., dos Reis, J.C., Moreira, J.M.M.A.P., & Ferronato, C., 2015. Considerações teórico-metodológicas sobre o processo de valoração dos recursos naturais. In: Parron, L. M., Garcia, J. R., Oliveira, E. B., Brown, G. G. & Prado, R. B., eds. Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica. Brasília: Embrapa.

Garrastazú, M.C., Mendonça, S.D., Horokoski, T.T., Cardoso, D.J., Rosot, M.A.D., Nimmo, E.R., & Lacerda, A.E.B., 2015. Carbon sequestration and riparian zones: assessing the impacts of changing regulatory practices in Southern Brazil. Land Use Policy 42, 329-339. http://dx.doi.org/10.1016/j.landusepol.2014.08.003.

Gollan, J.R., De Bruyn, L.L., Reid, N., & Wilkie, L., 2013. Monitoring the ecosystem service provided by dung beetles offers benefits over commonly used biodiversity metrics and a traditional trapping method. J. Nat. Conserv. 21(3), 183-188. http://dx.doi.org/10.1016/j.jnc.2012.12.004.

Gray, C.L., Slade, E.M., Mann, D.J., & Lewis, O.T., 2014. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes? Ecol. Evol. 4(7), 1049-1060. PMid:24772282. http://dx.doi.org/10.1002/ece3.1003.

Gregory, S.V., & Ashkenas, L., 1990. Riparian Management Guide [online]. Oregon: USDA Forest Service Pacific Northwest Region. Retrieved in 2020, August 20, from https://andrewsforest.oregonstate.edu/sites/default/files/lter/pubs/pdf/pub1214.pdf

Gregory, S.V., Swanson, F.J., McKee, W.A., & Cummins, K., 1991. An ecosystem perspective of riparian zones. Bioscience. 41(8), 540-551. https://doi.org/10.2307/1311607.

Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A., & Cardoso, A.C., 2016. Assessing water ecosystem services for water resource management. Environ. Sci. Policy. 61, 194-203. https://doi.org/10.1016/j.envsci.2016.04.008.

Gutiérrez, M., & Alonso, M.L.S., 2013. Which are, what is their status and what can we expect from ecosystem services provided by Spanish rivers and riparian areas? Biodivers. Conserv. 22(11), 2469-2503. http://dx.doi.org/10.1007/s10531-013-0532-2.

Hefting, M.M., Van Den Heuvel, R.N., & Verhoeven, J.T.A., 2013. Wetlands in agricultural landscapes for nitrogen attenuation and biodiversity enhancement: opportunities and limitations. Ecol. Eng. 56, 5-13. http://dx.doi.org/10.1016/j.ecoleng.2012.05.001.

Huh, M.K., & Choi, B.K., 2019. Floristic characterization and biodiversity of riparian zones at the Gwangyang river, Korea. Eur. J. Appl. Sci., 6(2), 24-38.

Jenkins, C., 2005. Nutrient flux assessment in the Port waterways. Adelaide: Environmental Protection Agency.

Jones, K.B., Slonecker, E.T., Nash, M.S., Neale, A.C., Wade, T.G., & Hamann, S., 2010. Riparian habitat changes across the continental United States (1972–2003) and potential implications for sustaining ecosystem services. Landsc. Ecol. 25(8), 1261-1275. http://dx.doi.org/10.1007/s10980-010-9510-1.

Kachenchart, B., Jones, D.L., Gajaseni, N., Edwards-Jones, G., & Limsakul, A., 2012. Seasonal nitrous oxide emissions from different land uses and their controlling factors in a tropical riparian ecosystem. Agric. Ecosyst. Environ. 158, 15-30. http://dx.doi.org/10.1016/j.agee.2012.05.008.

Kaushal, S.S., Mayer, P.M., Vidon, P.G., Smith, R.M., Pennino, M.J., Newcomer, T.A., Duan, S., Welty, C., & Belt, K.T., 2014. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. J. Am. Water Resour. Assoc. 50(3), 585-614. http://dx.doi.org/10.1111/jawr.12204.

Kenwick, R.A., Shammin, M.R., & Sullivan, W.C., 2009. Preferences for riparian buffers. Landsc. Urban Plan. 91(2), 88-96. http://dx.doi.org/10.1016/j.landurbplan.2008.12.005.

Kim, I.J., Hutchinson, S.L., Hutchinson, J.M.S., & Young, C.B., 2007. Riparian ecosystem management model: sensitivity to soil, vegetation, and weather input parameters. JAWRA, 45(5), 1171-1182. https://doi.org/10.1111/j.1752-1688.2007.00096.x.

Kobiyama, M., 2003. Conceitos de zona ripária e seus aspectos geobiohidrológicos. In: Proceedings of I Seminário de Hidrologia Florestal: Zonas Ripárias, Brasil, Alfredo Wagner-SC:Brazil. Retrieved in 2020, August 20, from http://www.labhidro.ufsc.br/Artigos/Seminario%20Hidrologia%20Florestal%20%282003%29.pdf

Lautenbach, S., Kugel, C., Lausch, A., & Seppelt, R., 2011. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 11(2), 676-687. http://dx.doi.org/10.1016/j.ecolind.2010.09.007.

Lee, J.A., Chon, J., & Ahn, C., 2014. Planning landscape corridors in ecological infrastructure using least-cost path methods based on the value of ecosystem services. Sustainability. 6(11), 7564-7585. http://dx.doi.org/10.3390/su6117564.

Lewis, S.E., Popp, J.S., English, L.A. & Odetola, O., 2017. Willingness to pay for riparian zones in an Ozark Watershed. J. Water Resour. Plan. Manag., 143(5), 04017006. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000740.

Lind, L., Hasselquist, E.M., & Laudon, H., 2019. Towards ecologically functional riparian zones: a meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manage., 249, 109391. https://doi.org/10.1016/j.jenvman.2019.109391.

Liu, S., Costanza, R., Farber, S., & Troy, A., 2010. Valuing ecosystem services: theory, practice, and the need for a transdisciplinary synthesis. Ann. N. Y. Acad. Sci. 1185(1), 54-78. PMid:20146762. http://dx.doi.org/10.1111/j.1749-6632.2009.05167.x.

Mackay, S., Arthington, A.H., & James, C.S., 2014. Classification and comparison of natural and altered flow regimes to support an Australian trial of the Ecological Limits of Hydrologic Alteration framework. Ecohydrology 7(6), 1485-1507. http://dx.doi.org/10.1002/eco.1473.

Matzek, V., Pulleston, C., & Gunn, J., 2014. Can carbon credits fund riparian forest restoration? Restor. Ecol. 61, 7-14. https://doi.org/10.1111/rec.12153.

McKergow, L.A., Weaver, D.M., Prosser, I.P., Grayson, R.B., & Reed, A.E.G., 2003. Before and after riparian management: sediment and nutrient exports from a small agricultural catchment, Western Australia. J. Hydrol. (Amst.) 270(3-4), 253-272. http://dx.doi.org/10.1016/S0022-1694(02)00286-X.

McVittie, A., Norton, L., Martin-Ortega, J., Siameti, I., Glenk, K., & Aalders, I., 2015. Operationalizing an ecosystem services-based approach using Bayesian Belief Networks: an application to riparian buffer strips. Ecol. Econ. 110, 15-27. http://dx.doi.org/10.1016/j.ecolecon.2014.12.004.

Meehan, T.D., Gratton, C., Diehl, E., Hunt, N.D., Mooney, D.F., Ventura, S.J., Barham, B.L., & Jackson, R.D., 2013. Ecosystem service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest. PLoS One 8(11), e80093. PMid:24223215. http://dx.doi.org/10.1371/journal.pone.0080093.

Millenium Ecosystem Assessment – MEA, 2005. Ecosystem and human well-being: synthesis. Washington: Island Press.

Mitsch, W.J., & Gosselink, J.G., 2000. The value of wetlands: importance of scale and landscape setting. Ecol. Econ. 35(1), 25-33. http://dx.doi.org/10.1016/S0921-8009(00)00165-8.

Mueller, J.M., 2014. Estimating willingness to pay for watershed restoration in Flagstaff, Arizona using dichotomous-choice contingent valuation. Forestry 87(2), 327-333. http://dx.doi.org/10.1093/forestry/cpt035.

Muller, F., De Groot, R., & Willemen, L., 2010. Ecosystem services at the landscape scale: the need for integrative approaches. Landsc. Online 23, 1-11. http://dx.doi.org/10.3097/LO.201023.

Naiman, R.J., & Décamps, H., 1997. The ecology of interfaces: riparian zones. Annu. Rev. Ecol. Evol. Syst. 28(1), 621-658. http://dx.doi.org/10.1146/annurev.ecolsys.28.1.621.

Natural Resources Conservation Service – NRCS, 1997. Riparian Forest Buffer [online]. Seattle: USDA-NRCS-Watershed Science Institute. Retrieved in 2020, August 20, from https://www.wcc.nrcs.usda.gov/ftpref/wntsc/strmRest/buffers/RiprarianForestBufferJobSheet.pdf

Nava-López, M.Z., Diemont, S.A.W., Hall, M., & Ávila-Akerberg, V., 2016. Riparian buffer zone and whole watershed influences on river water quality: implications for ecosystem services near megacities. Environ. Process 3(2), 277-305. http://dx.doi.org/10.1007/s40710-016-0145-3.

Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, R.D., Chan, K.M., Daily, G.C., Goldstein, J., Kareiva, P.M., Lonsdorf, E., Naidoo, R., Ricketts, T.H., & Shaw, M.R., 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7(1), 4-11. http://dx.doi.org/10.1890/080023.

Palazón, L., Gaspar, L., Latorre, B., Blake, W.H., & Navas, A., 2014. Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: a combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park. Solid Earth 5(2), 963-978. http://dx.doi.org/10.5194/se-5-963-2014.

Pereira, L.E., Amorim, G., Grigio, A.M., & Paranhos Filho, A.C., 2018. Análise comparativa entre métodos de índice de água por diferença normalizada (NDWI) em área úmida continental. Anu. Inst. Geocienc. 41(2), 654-662. https://doi.org/10.11137/2018_2_654_662.

Piedelobo, L., Taramelli, A., Schiavon, E. & Valentini, E., 2019. Assessment of green infrastructure in riparian zones using copernicus programme. Remote Sens. 11(24), 2967. https://doi.org/10.3390/rs11242967.

Posner, S., Verutes, G., Koh, I., Denu, D., & Ricketts, T., 2016. Global use of ecosystem service models. Ecosyst. Serv. 17, 131-141. http://dx.doi.org/10.1016/j.ecoser.2015.12.003.

Power, A.G., 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans. R. Soc. Lond. B. Biol. Sci. 365(1554), 2959-2971. PMid:20713396. http://dx.doi.org/10.1098/rstb.2010.0143.

Randhir, T.O., & Ekness, P., 2013. Water quality change and habitat potential in riparian ecosystems. Ecohydrol. Hydrobiol. 13(3), 192-200. http://dx.doi.org/10.1016/j.ecohyd.2013.09.001.

Resasco, J., Haddad, N.M., Orrock, J.L., Shoemaker, D., Brudvig, L.A., Damschen, E.I., Tewksbury, J.J., & Levey, D.J., 2014. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. Ecology 95(8), 2033-2039. PMid:25230454. http://dx.doi.org/10.1890/14-0169.1.

Riis, T., Kelly-Quinn, M., Aguiar, F.C., Manolaki, P., Bruno, D., Bejarano, M.D., Clerici, N., Fernandes, M.R., Franco, J.C., Pettit, N., Portela, A.P., Tammeorg, O., Tammeorg, P., Rodriguez-González, P.M., & Dufour, S., 2020. Global overview of ecosystem services provided by riparian vegetation. Bioscience 70(6), 501-514. http://dx.doi.org/10.1093/biosci/biaa041.

Rodrigues, R.R. 2000. Uma discussão nomenclatural das formações ciliares. In: Rodrigues, R.R., & Leitão Filho, H.F.L., eds. Matas ciliares: conservação e recuperação. São Paulo: EDUSP.

Rolfe, J., Johnston, R.J., Rosenberger, R.S., & Brouwer, R., 2015. Introduction: benefit transfer of environmental and resource values. In: Johnston, R.J., Rolfe, J., Rosenberger, R.S., & Brouwer, R. Benefit Transfer of Environmental and Resource Values: a guide for researchers and practitioners. http://dx.doi.org/10.1007/978-94-017-9930-0_1.

Rood, S. B., Scott, M.L., Dixon, M., González, E., Marks, C. O., Shafroth, P. B. & Volke, M., 2020. Ecological interfaces between land and flowing water: themes and trends in riparian research and management. Wetlands. 40, 1801-1811. http://doi: 10.1007/s13157-020-01392-4.

Salo, J.A., & Theobald, D.M., 2016. A Multi-scale, hierarchical model to map riparian zones: a multi-scale, hierarchical model to map riparian zones. River Res. Appl. 32(8), 1709-1720. http://dx.doi.org/10.1002/rra.3019.

Salvador, J.L.G., 1987. Considerações sobre as matas ciliares e a implantação de reflorestamentos mistos nas margens de rios e reservatórios. São Paulo: CESP, Série Divulgação e Informação.

SCImago, 2020. SJR – SCImago Journal & Country Rank [online]. Retrieved in 2020, August 29, from https://www.scimagojr.com/index.php

Selles, I.M., 2001. Revitalização de rios – orientação técnica. Rio de Janeiro: SEMADS. Retrieved in 2020, August 29, from https://www.docsity.com/pt/revitalizacao-de-rios-orientacao-tecnica-semads-gtz/4838204/

Sha, C., Mitsch, W.J., Mander, Ü., Lu, J., Batson, J., Zhang, L., & He, W., 2011. Methane emissions from freshwater riverine wetlands. Ecol. Eng. 37(1), 16-24. http://dx.doi.org/10.1016/j.ecoleng.2010.07.022.

Shaker, R.R., Yakubov, A., Nick, S., Vennie-Vollrath, E., Ehlinger, T.J. & Forsythe, K.W., 2017. Predicting aquatic invasion in Adirondack lakes: a spatial analysis of lake and landscape characteristics. Ecosphere.8(3) http://dx.doi.org/10.1002/ecs2.1723.

Sharps, K., Masante, D., Thomas, A., Jackson, B., Redhead, J., May, L., Prosser, H., Cosby, B., Emmett, B., & Jones, L., 2017. Comparing strengths and weaknesses of three ecosystem services modeling tools in a diverse UK river catchment. Sci. Total Environ. 584-585, 118-130. PMid:28147292. http://dx.doi.org/10.1016/j.scitotenv.2016.12.160.

Soman, S., Beyeler, S., Kraft, S.E., Thomas, D., & Winstanley, D., 2007. Ecosystem services from riparian areas: a brief summary of the literature [online]. USA: Illinois River Coordinator Council. Retrieved in 2020, August 20, from http://www.verdevalley.org/RiparianAreas.pdf

Souza, M.C., 1999. Algumas considerações sobre vegetação ripária. Cad. Biodivers. 2(1), 4-10.

Sun, X., Lu, Z., Li, F. & Crittenden, J.C., 2018. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci. Total Environ., 622-623, 974-987.

Sweeney, B.W., & Newbold, J.D., 2014. Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. J. Am. Water Resour. Assoc. 50, 560-584. https://doi.org/10. 1111/jawr.12203.

Sweeney, B.W., Bott, T.L., Jackson, J.K., Kaplan, L.A., Newbold, J.D., Standley, L.J., Hession, W.C., & Horwitz, R.J., 2004. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Natl. Acad. Sci. USA 101(39), 14132-14137. PMid:15381768. http://dx.doi.org/10.1073/pnas.0405895101.

Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A.M., Muller, E., & Décamps, H., 2000. Impacts of riparian vegetation on hydrological processes. Hydrol. Processes 14, 2959-2976. http://dx.doi.org/10.1002/1099-1085(200011/12)14:16/17<2959::AID-HYP129>3.0.CO;2-B.

Tansley, A.G., 1935. The use and abuse of vegetational concepts and terms. Ecology 16(3), 284-307. http://dx.doi.org/10.2307/1930070.

Tiegs, S.D., Costello, D.M., Isken, M.W., Woodward, G., Mcintyre, P.B., Gessner, M.O., Chauvet, E., Griffiths, N.A., Flecker, A., & Zwart, J.A., 2019. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science. 5(1), 1-8. https://doi.org/10.1126/sciadv.aav0486.

Torres, R.B., Matthes, L.A.F., Rodrigues, R.R., & Leitão Filho, H.F., 1992. Lista de espécies florestais nativas para plantio em áreas de brejo. O Agrônomo. (Online), 44(1-3), 1-2. Retrieved in 2020, August 20, from http://www.fundacaofia.com.br/gdusm/lista_florestas_brejo.pdf

Turpie, J.K., Marais, C., & Blignaut, J.N., 2008. The working for water programme: evolution of a payments for ecosystem services mechanism that addresses both poverty and ecosystem service delivery in South Africa. Ecol. Econ. 65(4), 788-798. http://dx.doi.org/10.1016/j.ecolecon.2007.12.024.

Uriarte, M., Yackulic, C.B., Lim, Y., & Arce-Nazario, J.A., 2011. Influence of land use on water quality in a tropical landscape: a multi-scale analysis. Landsc. Ecol. 26(8), 1151-1164. PMid:26146455. http://dx.doi.org/10.1007/s10980-011-9642-y.

Vandecasteele, I., Marí i Rivero, I., Baranzelli, C., Becker, W., Dreoni, I., Lavalle, C., & Batelaan, O., 2018. The Water Retention Index: using land use planning to manage water resources in Europe. Sustain. Dev. (Bradford) 26(2), 122-131. http://dx.doi.org/10.1002/sd.1723.

Vanderhoof, M. & Burt, C., 2018. Applying high resolution imagery to evaluate restoration induced changes in stream condition, Missouri River Headwaters Basin, Montana. Remote Sens. 10(6), 913. https://doi.org/10.3390/rs10060913.

Vigiak, O., Malagó, A., Bouraoui, F., Grizzetti, B., Weissteiner, C.J., & Pastori, M., 2016. Impact of current riparian land on sediment retention in the Danube River Basin. Sustain. Water Qual. Ecol. 8, 30-49. http://dx.doi.org/10.1016/j.swaqe.2016.08.001.

Vitalli, P.D.L., Zakia, M.J.B., & Durigan, G., 2009. Considerações sobre a legislação correlata à zona-tampão de unidades de conservação no Brasil. Ambiente Soc. 12(1), 67-82. http://dx.doi.org/10.1590/S1414-753X2009000100006.

Walsh, P., Jakeman, A., & Thompson, C., 2020. Modelling headwater channel response and suspended sediment yield to in-channel large wood using the Caesar-Lisflood landscape evolution model. Geomorphology 363, 107209. http://dx.doi.org/10.1016/j.geomorph.2020.107209.

Warren II, R.J., Potts, D.L., & Frothingham, K.M., 2015. Stream structural limitations on invasive communities in urban riparian areas. Invasive Plant Sci. Manag. 8(3), 353-362. http://dx.doi.org/10.1614/IPSM-D-14-00081.1.

Webb, A.A., & Erskine, W.D., 2003. A practical scientific approach to riparian vegetation rehabilitation in Australia. J. Environ. Manage. 68(4), 329-341. PMid:12877867. http://dx.doi.org/10.1016/S0301-4797(03)00071-9.

Yang, L.R., Chen, L.D., & Sun, R.H., 2009. River ecosystems and their self-purification capability: Research status and challenges. Shengtai Xuebao/Acta Ecologica Sinica 29, 5066-5075.

Yang, X., 2007. Integrated use of remote sensing and geographic information systems in riparian vegetation delineation and mapping. Remote Sens. 28(2), 353-370. http://dx.doi.org/10.1080/01431160600726763.

Zulian, G., Maes, J., & Paracchini, M.L., 2013. Linking land cover data and crop yields for mapping and assessment of pollination services in Europe. Land (Basel) 2(3), 472-492. http://dx.doi.org/10.3390/land2030472.
 


Submitted date:
03/03/2022

Accepted date:
06/21/2022

Publication date:
07/19/2022

62d6a39ba953952f63633e03 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections