Acta Limnologica Brasiliensia
https://www.actalb.org/article/doi/10.1590/S2179-975X11123
Acta Limnologica Brasiliensia
Original Article

Spatial variation, more than ontogenetic, explains the diet of Bryconamericus exodon in two Pantanal rivers

Variação espacial, mais que a ontogenética, explica a dieta de Bryconamericus exodon em dois rios do Pantanal

Karoline Aparecida de Sena; Yzel Rondon Súarez

Downloads: 0
Views: 398

Abstract

Aim: Studies of natural variations in fish diet allow, in turn, a better understanding of environmental changes along the hydrological cycle that can affect resources and, hence, biodiversity conservation. With this in mind, the present study aimed to understand how spatial and ontogenetic aspects (using Standard Length as proxy) define dietary composition, trophic position and trophic niche breadth for a small characid (Bryconamericus exodon) in streams located in two rivers of the Brazilian Pantanal. We also assessed whether spatial differences influence the structuring of trophic networks.

Methods: Fish were sampled monthly in the rainy season (October/2017 to March/2018) in four tributaries of the Negro and Apa Rivers, using different sampling methods. In the laboratory, fish were measured and weighed, followed by excision of stomach for posterior analysis.

Results: We analyzed 211 individuals, 126 from the Apa River (Standard lengthmin= 11.28mm; Standard lengthmax= 43.53mm) and 85 from the Negro River (Standard lengthmin= 13.26mm; Standard lengthmax= 40.05mm), that consumed mainly aquatic insects (Alimentary indexTotal= 87.97%), followed by terrestrial insects (Alimentary indexTotal= 9.02%). Dietary composition was mainly influenced by spatial variation (Pseudo-F1,194=12.21; p<0.001), followed by ontogenetic variation (Pseudo-F1,190=7.23; p<0.001), however, for trophic niche breadth, we did detect a higher importance of spatial variation (t=4.71; p<0.001) and an absence of ontogenetic variation (t=1.24; p=0.213). No spatial variation was detected for complementary specialization (p=0.998); only connectance showed a significant variation (p=0.047) with higher mean values in the Negro River (C= 0.27 ± 0.016) when compared to those of populations in the Apa River (C=0.22 ± 0.019). In addition, trophic position was not influenced by spatial (t= -1.77; p=0.077) or ontogenetic (t=0.69; p=0.494) variations.

Conclusions: B. exodon is considered an insectivorous species whose dietary composition can be explained more by spatial than ontogenetic variation.

Keywords

trophic niche breadth, trophic ecology, trophic position, complex network

Resumo

Objetivo: O estudo das variações naturais na dieta dos peixes permite, por sua vez, uma melhor compreensão das alterações ambientais ao longo do ciclo hidrológico que podem afetar os recursos e, consequentemente, a conservação da biodiversidade. Com isso em mente, o presente estudo teve como objetivo compreender como os aspectos espaciais e ontogenéticos (usando o Comprimento padrão como proxy) definem a composição da dieta, posição trófica e amplitude de nicho trófico para um pequeno caracídeo (Bryconamericus exodon) em riachos localizados em dois rios do Pantanal brasileiro. Também avaliamos se as diferenças espaciais influenciam na estruturação das redes tróficas.

Métodos: Os peixes foram amostrados mensalmente na estação chuvosa (Outubro/2017 a Março/2018) em quatro tributários dos rios Negro e Apa, utilizando diferentes métodos de amostragem. Em laboratório, os peixes foram medidos e pesados, seguido de excisão do estômago para posterior análise.

Resultados: Foram analisados 211 indivíduos, sendo 126 do Apa (Comprimento padrãomin= 11,28mm; Comprimento padrãomax= 43,53mm) e 85 do Negro (Comprimento padrãomin= 13,26mm; Comprimento padrãomax= 40,05mm), que consumiram principalmente insetos aquáticos (Índice alimentarTotal= 87,97%), seguidos de insetos terrestres (Índice alimentarTotal=9,02%). A composição da dieta foi influenciada principalmente pela variação espacial (Pseudo-F1,194=12,21; p<0,001), seguida da variação ontogenética (Pseudo-F1,190=7,23; p<0,001), no entanto, para amplitude de nicho trófico, detectamos uma maior importância da variação espacial (t=4,71; p<0,001) e ausência de variação ontogenética (t=1,24; p=0,213). Não foi detectada variação espacial para especialização complementar (p=0,998); apenas a conectância obteve uma variação significativa (p=0,047), com valores médios maiores no rio Negro (C= 0,27 ± 0,016) quando comparados aos das populações do rio Apa (C=0,22 ± 0,019). Além disso, a posição trófica não foi influenciada por variações espaciais (t=-1,77; p=0,077) ou ontogenéticas (t=0,69; p=0,494).

Conclusões: B. exodon é considerada uma espécie insetívora, cuja composição da dieta pode ser explicada mais pela variação espacial do que pela variação ontogenética.

Palavras-chave

amplitude de nicho trófico, ecologia trófica, posição trófica, redes complexas

References

Abelha, M.C.F., Agostinho, A.A., & Goulart, E., 2001. Plasticidade trófica em peixes de água doce. Acta Sci. Biol. Sci. 23(2), 425-434.

Abilhoa, V., Bornatowski, H., & Otto, G., 2009. Temporal and ontogenetic variations in feeding habits of Hollandichthys multifasciatus (Teleostei: Characidae) in coastal Atlantic rainforest streams, southern Brazil. Neotrop. Ichthyol. 7(3), 415-420. http://doi.org/10.1590/S1679-62252009005000001.

Astudillo, M.R., Novelo-Gutiérrez, R., Vázquez, G., García-Franco, J.G., & Ramírez, A., 2016. Relationships between land cover, riparian vegetation, stream characteristics, and aquatic insects in cloud forest streams, Mexico. Hydrobiologia 768(1), 167-181. http://doi.org/10.1007/s10750-015-2545-1.

Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N., 2007. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 17(4), 341-346. PMid:17275300. http://doi.org/10.1016/j.cub.2006.12.039.

Bozza, A.N., & Hahn, N.S., 2010. Uso de recursos alimentares por peixes imaturos e adultos de espécies piscívoras em uma planície de inundação neotropical. Biota Neotrop. 10(3), 217-226. http://doi.org/10.1590/S1676-06032010000300025.

Brejão, G.L., Hoeinghaus, D.J., Pérez‐Mayorga, M.A., Ferraz, S.F., & Casatti, L., 2018. Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conserv. Biol. 32(4), 860-871. PMid:29210104. http://doi.org/10.1111/cobi.13061.

Choi, S.H., & Suk, H.Y., 2012. The mechanisms leading to ontogenetic diet shift in a microcanivore, Pterogobius elapoides (Gobiidae). Anim. Cells Syst. 16(4), 343-349. http://doi.org/10.1080/19768354.2012.667002.

Dias, T.S., Stein, R.J., & Fialho, C.B., 2017. Ontogenetic variations and feeding habits of a Neotropical annual fish from southern Brazil. Iheringia Ser. Zool. 107(1), e2017020. http://doi.org/10.1590/1678-4766e2017020.

Dormann, C.F., 2020. Using bipartite to describe and plot two-mode networks in R. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://cran.r-project.org/web/packages/bipartite/vignettes/Intro2bipartite.pdf

Dormann, C.F., Fründ, J., Gruber, B., Beckett, S., Devoto, M., Felix, G., Iriondo, J., Opsahl, T., Pinheiro, R., & Strauss, R., 2014. Package ‘bipartite’. Visualising bipartite networks and calculating some (ecological) indices. R package, version 2.04. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://cran.r-project.org/web/packages/bipartite/index.html

Durán, A.A., Saldaña-Vázquez, R.A., Graciolli, G., & Peinado, L.C., 2019. Specialization and modularity of a bat fly antagonistic ecological network in a dry tropical forest in northern Colombia. Acta Chiropt. 20(2), 503-510. http://doi.org/10.3161/15081109ACC2018.20.2.020.

Fernando, A.M.E., & Súarez, Y.R., 2021. Resource use by omnivorous fish: effects of biotic and abiotic factors on key ecological aspects of individuals. Ecol. Freshwat. Fish 30(2), 222-233. http://doi.org/10.1111/eff.12578.

Ferreira, A., De Paula, F.R., De Barros Ferraz, S.F., Gerhard, P., Kashiwaqui, E.A., Cyrino, J.E., & Martinelli, L.A., 2012a. Riparian coverage affects diets of characids in neotropical streams. Ecol. Freshwat. Fish 21(1), 12-22. http://doi.org/10.1111/j.1600-0633.2011.00518.x.

Ferreira, A., Gerhard, P., & Cyrino, J.E., 2012b. Diet of Astyanax paranae (Characidae) in streams with different riparian land covers in the Passa-Cinco River basin, southeastern Brazil. Iheringia Ser. Zool. 102(1), 80-87. http://doi.org/10.1590/S0073-47212012000100011.

Fricke, R., Eschmeyer, W.N., & Van der Laan, R., 2023. Eschmeyer's catalog of fishes: genera, species, references. San Francisco, CA: California Academy of Sciences. Retrieved in 2023, December 15, from https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

Frossard, J., & Renaud, O., 2019. Permuco: permutation tests for regression, (repeated measures) ANOVA/ANCOVA and comparison of signals. R package version 1.1.0. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://CRAN.R-project.org/package=permuco

Gerking, S.D., 1994. Feeding ecology of fish. San Diego: Elsevier.

Gouveia, É.J., Rondon, P.L., & Súarez, Y.R., 2022. Feeding ecology of Eigenmannia desantanai (Gymnotiformes: Sternopygidae) in southern Pantanal, Brazil. Acta Limnol. Bras. 34, e2. http://doi.org/10.1590/s2179-975x9820.

Hellawell, J.M., & Abel, R., 1971. A rapid volumetric method for the analysis of the food of fishes. J. Fish Biol. 3(1), 29-37. http://doi.org/10.1111/j.1095-8649.1971.tb05903.x.

Huss, M., Persson, L., Borcherding, J., & Heermann, L., 2013. Timing of the diet shift from zooplankton to macroinvertebrates and size at maturity determine whether normally piscivorous fish can persist in otherwise fishless lakes. Freshw. Biol. 58(7), 1416-1424. http://doi.org/10.1111/fwb.12138.

Hyslop, E.J., 1980. Stomach contents analysis - a review of methods and their application. J. Fish Biol. 17(4), 411-429. http://doi.org/10.1111/j.1095-8649.1980.tb02775.x.

Kawakami, E., & Vazzoler, G., 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Bol. Inst. Oceanogr. 29(2), 205-207. http://doi.org/10.1590/S0373-55241980000200043.

Lampert, V.R., Dias, T.S., Tondato-Carvalho, K.K., & Fialho, C.B., 2022. The effects of season and ontogeny in the diet of Piabarchus stramineus (Eigenmann 1908) (Characidae: Stevardiinae) from southern Brazil. Acta Limnol. Bras. 34(1), e31. http://doi.org/10.1590/s2179-975x5621.

Layman, C.A., Winemiller, K.O., Arrington, D.A., & Jepsen, D.B., 2005. Body size and trophic position in a diverse tropical food web. Ecology 86(9), 2530-2535. http://doi.org/10.1890/04-1098.

Loureiro, V.E., & Hahn, N.S., 1996. Dieta e atividade alimentar da traíra, Hoplias malabaricus (Bloch, 1794) (Osteichthyes, Erythrinidae), nos primeiros anos de formação do reservatório de Segredo-PR. Acta Limnol. Bras. 8(1), 195-205.

Lowe-McConnell, R.H., 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: EDUSP.

Luiz, E.A., Agostinho, A.A., Gomes, L.C., & Hahn, N.S., 2018. Ecologia trófica de peixes em dois riachos da bacia do rio Paraná. Rev. Bras. Biol. 58(2), 273-285.

Mirande, J.M., 2019. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics 35(3), 282-300. PMid:34622981. http://doi.org/10.1111/cla.12345.

Nakano, S., & Murakami, M., 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. USA 98(1), 166-170. PMid:11136253. http://doi.org/10.1073/pnas.98.1.166.

Nakazawa, T., 2015. Ontogenetic niche shifts matter in community ecology: a review and future perspectives. Popul. Ecol. 57(2), 347-354. http://doi.org/10.1007/s10144-014-0448-z.

Nakazawa, T., 2017. Individual interaction data are required in community ecology: a conceptual review of the predator–prey mass ratio and more. Ecol. Res. 32(1), 5-12. http://doi.org/10.1007/s11284-016-1408-1.

Neves, M.P., Kratina, P., Delariva, R.L., Jones, J.I., & Fialho, C.B., 2021. Seasonal feeding plasticity can facilitate coexistence of dominant omnivores in Neotropical streams. Rev. Fish Biol. Fish. 31(2), 417-432. http://doi.org/10.1007/s11160-021-09648-w.

Neves, M.P., Silva, J.C., Baumgartner, D., Baumgartner, G., & Delariva, R.L., 2018. Is resource partitioning the key? The role of intra‐interspecific variation in coexistence among five small endemic fish species (Characidae) in subtropical rivers. J. Fish Biol. 93(2), 238-249. PMid:30241113. http://doi.org/10.1111/jfb.13662.

Novakowski, G.C., Hahn, N.S., & Fugi, R., 2008. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotrop. Ichthyol. 6(4), 567-576. http://doi.org/10.1590/S1679-62252008000400004.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., & Wagner, H., 2016. Vegan: community ecology package. Version 2.4-1. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from http://CRAN.R-project.org/package=vegan

Patefield, W.M., 1981. Algorithm AS 159: an efficient method of generating random R× C tables with given row and column totals. J. R. Stat. Soc. Appl. Stat. 30(1), 91-97. http://doi.org/10.2307/2346669.

Pimm, S.L., 1982. Food webs. Dordrecht: Springer, Population and Community Biology (PCB). http://doi.org/10.1007/978-94-009-5925-5.

Pinto, T.L.F., & Uieda, V.S., 2007. Aquatic insects selected as food for fishes of a tropical stream: are there spatial and seasonal differences in their selectivity. Acta Limnol. Bras. 19(1), 67-78.

Potapov, A.M., Brose, U., Scheu, S., & Tiunov, A.V., 2019. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194(6), 823-839. PMid:31738104. http://doi.org/10.1086/705811.

R Development Core Team, 2021. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from http://www.R-project.org/

Ramos-Jiliberto, R., Valdovinos, F.S., Arias, J., Alcaraz, C., & García-Berthou, E., 2011. A network-based approach to the analysis of ontogenetic diet shifts: an example with an endangered, small-sized fish. Ecol. Complex. 8(1), 123-129. http://doi.org/10.1016/j.ecocom.2010.11.005.

Ríos‐Pulgarín, M.I., Barletta, M., & Mancera‐Rodríguez, N.J., 2016. The role of the hydrological cycle on the distribution patterns of fish assemblages in an Andean stream. J. Fish Biol. 89(1), 102-130. PMid:26333196. http://doi.org/10.1111/jfb.12757.

Riveros, A.F., Jut Solórzano, J.C., Monaco, I.A., Cardoso, C.A.L., Suarez, Y.R., & Viana, L.F., 2021. Toxicogenetic effects on fish species in two sub-basins of the upper Paraguay River, Southern Pantanal–Brazil. Chemosphere 264(1), 128383. PMid:33017705. http://doi.org/10.1016/j.chemosphere.2020.128383.

Russo, M.R., Hahn, N.S., & Pavanelli, C.S., 2004. Resource partitioning between two species of Bryconamericus Eigenmann, 1907 from the Iguaçu river basin, Brazil. Acta Sci. Biol. Sci. 26(4), 431-436.

Sánchez-Hernández, J., & Amundsen, P.A., 2018. Ecosystem type shapes trophic position and omnivory in fishes. Fish Fish. 19(6), 1003-1015. http://doi.org/10.1111/faf.12308.

Sánchez-Hernández, J., Nunn, A.D., Adams, C.E., & Amundsen, P.A., 2019. Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. Biol. Rev. Camb. Philos. Soc. 94(2), 539-554. PMid:30251433. http://doi.org/10.1111/brv.12468.

Sánchez-Hernández, J., Hayden, B., Harrod, C., & Kahilainen, K.K., 2021. Population niche breadth and individual trophic specialisation of fish along a climate-productivity gradient. Rev. Fish Biol. Fish. 31(4), 1025-1043. http://doi.org/10.1007/s11160-021-09687-3.

Scanferla, A.F.L.S., & Súarez, Y.R., 2016. Flood pulse are the main determinant of feeding dynamics and composition of Odontostilbe pequira (Characiformes: Characidae) in southern Pantanal, Brazil. Acta Limnol. Bras. 28(0), e19. http://doi.org/10.1590/s2179-975x3316.

Severo-Neto, F., Brejão, G.L., & Casatti, L., 2023. Fish functional trophic groups in headwater karst streams from the Upper Paraguay River basin. Neotrop. Ichthyol. 21(1), e220103. http://doi.org/10.1590/1982-0224-2022-0103.

Silva, J.C., & Bialetzki, A., 2019. Early life history of fishes and zooplankton availability in a Neotropical floodplain: predator-prey functional relationships. J. Plankton Res. 41(1), 63-75. http://doi.org/10.1093/plankt/fby045.

Vander Zanden, M.J., Cabana, G., & Rasmussen, J.B., 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can. J. Fish. Aquat. Sci. 54(5), 1142-1158. http://doi.org/10.1139/f97-016.

Vázquez, D.P., Chacoff, N.P., & Cagnolo, L., 2009. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90(8), 2039-2046. PMid:19739366. http://doi.org/10.1890/08-1837.1.

Virgilio, L.R., Ramalho, W.P., Silva, J.C.B.S., Suçuarana, M.S., Brito, C.H., & Vieira, L.J.S., 2018. Does riparian vegetation affect fish assemblage? A longitudinal gradient analysis in three Amazonian streams. Acta Sci. Biol. Sci. 40(1), 42562. http://doi.org/10.4025/actascibiolsci.v40i1.42562.

Wang, S., Tang, J.P., Su, L.H., Fan, J.J., Chang, H.Y., Wang, T.T., Wang, L., Lin, H.J., & Yang, Y., 2019. Fish feeding groups, food selectivity, and diet shifts associated with environmental factors and prey availability along a large subtropical river, China. Aquat. Sci. 81(2), 31. http://doi.org/10.1007/s00027-019-0628-1.

Zeni, J.O., Hoeinghaus, D.J., & Casatti, L., 2017. Effects of pasture conversion to sugarcane for biofuel production on stream fish assemblages in tropical agroecosystems. Freshw. Biol. 62(12), 2026-2038. http://doi.org/10.1111/fwb.13047.

Zhang, J., Ding, Q., & Huang, J., 2016. Spaa: SPecies Association Analysis. R package version 0. 2. 2, 2: 1-32. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://cran.r-project.org/web/packages/spaa/spaa.pdf
 


Submitted date:
12/15/2023

Accepted date:
04/19/2024

Publication date:
06/11/2024

66685884a95395138c3ec3f4 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections