Ovos de resistência de rotíferos presentes em sedimentos secos de um açude no semi-árido paralbano

CRISPIM, M.C. & WATANABE, T.

UFFP/PRODEMA, Caixa Postal 5122, CEP: 58051-970 - João Pessoa, PB. e-mail: ccrispim@hotmail.com.br

RESUMO: Ovos de resistência de rotíferos presentes em sedimentos secos de um açude no semi-árido Paraíba. Este trabalho teve como objetivo analisar os ovos de resistência de rotíferos nos sedimentos do Açude de Soledade (Paraíba, Brasil), que esteve completamente seco durante um ano. A presença de ovos de resistência de rotíferos foi analisada ao longo de um transecto transversal ao eixo principal do açude. Comparando as espécies que ecodiram em laboratório com as que estiveram presentes no açude, antes deste seca completamente, verificamos que a diversidade foi maior em laboratório. O tempo de eclosão foi diferente entre as espécies, notando-se uma sequência entre elas. As espécies mais comuns ecodidadas foram: Brachionus urceolaris, B. angulatus, Hexarthra jenkinae e Lecane (M.) bulla. Isto mostra que, apesar de algumas espécies não estarem presentes de forma ativa na coluna de água, isto não significa que não se encontram naquele ambiente, não devendo por isso ser negligenciadas, principalmente em estudos de diversidade biológica e ecológicos.

Palavras chave: Semi-árido, Rotífera, ovos de resistência.

ABSTRACT: Resting eggs of rotifers in dry sediments of a dam in a semi-arid region in Paraíba state. This work analysed the presence of resting eggs of rotifers in dry sediments of Soledade dam located in a semi-arid region in Paraíba State. This dam was completely dry for one year. The authors studied the presence of rotifers along a transversal transect in the dam. Species ecolod in laboratory were analysed. Comparing the species present in the dam before the drought and species ecolod in laboratory, we observed that richness was higher in the latter. Brachionus urceolaris, B. angulatus, Hexarthra jenkinae and Lecane (M.) bulla, were the most frequent species ecolod from quadrants. Ecoloding time of the eggs was different among species, being observed an ecological succession. Concluding, although a species is not found in the water column, it could be present in a passive way in the environment, as resting eggs. Diversity and ecological studies should attend to this, not neglecting species that were present in diapause stages in the habitat.

Key-words: Semi-arid, rotifers, resting eggs, northeast Brazil.

Introdução

Muitos organismos, como os insectos, os crustáceos (Fryer, 1996; Rossi et al., 1996) e os rotíferos (King & Snell, 1980; Gilbert, 1995), têm a capacidade de produzir estágios de diapausa, que lhes permite sobreviver em ambientes que se tornem inóspitos em determinadas épocas. As causas que levam ao início da diapausa podem ser várias. Por exemplo, em Daphnia (Cladocera) a presença de predadores pode ser o sinal ambiental para a formação de efípios (Sliusarzyk, 1995; Pijanowska & Stolpe, 1996); em rotíferos a produção de ovos de resistência está diretamente relacionada com a densidade populacional, ocorrendo a reprodução sexual quando
os picos de densidade são mais elevados (King & Snell, 1980); a diminuição de alimentação também influencia a produção de um novo estágio de diapausa em rotíferos (Gilbert, 1995). Em copepodos calanoides, a temperatura e a disponibilidade de alimento podem ser os fatores responsáveis pela indução de diapausa (Jersabek & Schabetsberger, 1985). Os ovos de resistência não são apenas importantes para possibilizar a recolonização em ambientes após um período adverso, mas também para determinar a estrutura e dinâmica da comunidade zooplânctônica, padrões zoogeográficos e evolução de populações locais. Além disso, a presença destes ovos nos sedimentos também pode manter a variabilidade genética da população e afetar a taxa de evolução (De Stasio, 1990).

No semi-árido nordestino, os açudes são, na sua maioria, temporários, ficando secos em anos de seca mais prolongada. Os organismos que habitam estes ambientes têm de possuir estratégias de vida que lhes possibilitem permanecer em diapausa quando estes ambientes estão completamente secos, ou quando se tornam impróprios, como por exemplo excessivamente salinos, que é o que ocorre nos açudes nordestinos, que naturalmente favorecem o acúmulo de sais. A forte evaporação devido à insolação, produz a perda de água, mas não dos sais, que ao longo dos anos vão-se acumulando nos sedimentos (Santiago, 1996), elevando o teor salino, principalmente quando os níveis de água estão baixos.

Este trabalho tem como objetivos analisar a presença de ovos de resistência de rotíferos em sedimentos secos do Açude de Soledade e determinar as espécies presentes no açude, em forma de diapausa.

Local de estudo

O Açude de Soledade foi construído em 1933 e está localizado no município com o mesmo nome, na zona do Catiri do Estado da Paraíba, com latitude 07° 04’ S e longitude 36° 22’ W. Sobre uma precipitação anual média (entre os anos de 1990 e 1995) de 344 mm., tem capacidade máxima de acumulação de água de 27.056.000 m³ e possui uma profundidade máxima de 15 m. Este corpo d’água alcançou as cotas máximas somente quando foi construído, sendo que, desde então, as secas que vêm assolando a região não permitiram que os níveis máximo fossem novamente alcançados. O principal objetivo da construção deste açude foi o abastecimento de água à cidade de Soledade, mas há vários anos que não serve ao seu propósito, devido à ausência ou deficiência na quantidade de água que possui. O Quadrante I não recebe água desde 1985 e os locais dos Quadrantes 2 a 9 não recebem água desde 1986. O Quadrante 10 é uma situação intermediária entre o Quadrante I e os Quadrantes 2 a 9. O Quadrante 11 está seco desde 1996 (Fig. 1).

Material e métodos

Foi desenhado um transecto transversal ao comprimento do açude. Ao longo deste transecto foram projetados 10 quadrantes, com 15 metros de lado, perfazendo uma extensão de 150 metros. Além destes quadrantes foi criado mais um (Fig. 1), no local que parece ter sido o último a conter água, devido à presença de esqueletos e escamas de peixe. Nestas amostras, foram analisadas as espécies que ecolidam.

Foram coletadas, em março de 1998, no Açude de Soledade, com o auxílio de um cano de PVC, como delimitador, 40,69 cm³ de sedimento em cada amostra. De cada quadrante foram retiradas 3 réplicas, a 5 profundidades diferentes (1,5 cm), totalizando 15 réplicas por quadrante. Em laboratório, foi adicionada água destilada a cada amostra, que depois de misturada para homogenização, foi filtrada por uma rede de nylon com 50µm de abertura de malha. O sedimento mais fino e cerca de 50 ml de água foram acondicionados em pequenos vidros com cerca de 55 ml de

Não houve adição de alimento nos frascos e a temperatura da água foi de 26 ± 1°C.

Figura 1: Localização dos 11 quadrantes no Açude de Soledade.

A coleta dos exemplares no açude, quando este tinha água, foi efetuada através da filtragem de 100 litros de água da margem, por uma rede planctônica com 50 µm de abertura de malha. Foram utilizadas amostras de 3 épocas do ano: dezembro (95), fevereiro (96) e abril (96).

Resultados

Ecolidam em laboratório, a partir dos ovos de resistência presentes nos sedimentos. 15 espécies de Rotífera: Brachionus angularis, B. angularis I. chelonis, B. urceolaris, B. caudatus I. australis, B. australis, B. havanensis, Cephalodella stenroosi, Cephalodella innesi (?), Dicranophorus sp., Filinia longiseta, Hexarthra jenkinsiae, Lecane (M.) bulla, Lecane (M.) lunaris, Lydia sp. e Rotaria sp. Os respectivos quadrantes em que as espécies ecolidam, estão representados na Tab. 1.

Nos 165 frascos analisados, as espécies não ecolidam todas ao mesmo tempo. Verificou-se que o tempo de eclosão variou de espécie para espécie, assim como a tolerância destas ao ambiente criado dentro dos frascos. Assim, constatou-se que B. urceolaris foi sempre a primeira a ecodir, seguida por B. angularis ou H. jenkinsiae, mas as primeiras apenas permaneciam nos frascos alguns dias, enquanto que a última permaneceu até 3 meses. As restantes espécies, à semelhança do gênero Brachionus, assim que surgiram, deixavam de ser observadas alguns dias depois. O quadrante 1, que não possui água há 13 anos, não apresentou espécies de rotíferos. O Quadrante 6 foi o que apresentou menos espécies, apenas com B. urceolaris e B. angularis (Tab. 1), enquanto que o Quadrante 10 foi o que apresentou mais espécies, com 10 espécies ecolidas.

As espécies mais frequentes em todos os frascos foram B. urceolaris, B. angularis, H. jenkinsiae e Lecane (M.) bulla.
Tabela I: Espécies ecolodidas nos respectivos quadrantes.

<table>
<thead>
<tr>
<th>Espécies</th>
<th>Quadrantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachionus angularis</td>
<td>2, 3, 4, 5, 6, 8, 9, 10 e 11</td>
</tr>
<tr>
<td>B. angularis f. chelonis</td>
<td>9</td>
</tr>
<tr>
<td>B. caudatus f. austrogenitus</td>
<td>10</td>
</tr>
<tr>
<td>B. falcatus</td>
<td>5</td>
</tr>
<tr>
<td>B. havanaensis</td>
<td>9</td>
</tr>
<tr>
<td>B. urceolaris</td>
<td>2, 3, 4, 5, 6, 7, 8, 9, 10 e 11</td>
</tr>
<tr>
<td>Cephalodella innesi</td>
<td>10</td>
</tr>
<tr>
<td>C. stenroosi</td>
<td>3, 4, 5, 10 e 11</td>
</tr>
<tr>
<td>Dicranophorus sp.</td>
<td>7 e 11</td>
</tr>
<tr>
<td>Filinia longiseta</td>
<td>10</td>
</tr>
<tr>
<td>Hexanthera jenkinae</td>
<td>2, 3, 4, 7, 8, 9, 10 e 11</td>
</tr>
<tr>
<td>Lecane (M.) bulia</td>
<td>2, 3, 4, 8 e 9</td>
</tr>
<tr>
<td>Lecane lunaris</td>
<td>3, 5, 10 e 11</td>
</tr>
<tr>
<td>Lyndia sp.</td>
<td>10</td>
</tr>
<tr>
<td>Rotaria sp.</td>
<td>3, 5 e 10</td>
</tr>
</tbody>
</table>

As espécies que eclodiram, mesmo aquelas que alcançaram elevadas densidades nos frascos, apresentaram baixas densidades no início, o que leva a crer que o número de ovos eclodidos foi baixo, e que as altas densidades alcançadas deveu-se depois a reprodução partenogenética, o que ocorreu apenas em algumas espécies como B. urceolaris e H. jenkinae. As outras espécies provavelmente não apresentaram densidades tão elevadas, nã0 estarem adaptadas ao ambiente criado nos frascos.

Não foram observadas diferenças na eclosão em relação às profundidades amostradas. Mesmo quando uma espécie não eclodia a uma profundidade num determinado quadrante, eclodia a essa profundidade em outro.

Comparando as espécies presentes nos sedimentos com aquelas presentes na água da margem do açude, verificamos que eclodiram mais espécies em laboratório do que as que estavam presentes na água antes do açude secar (Tab. II).

Tabela II: Espécies de roíferos presentes nos sedimentos em diapausa e na água antes do açude secar.

<table>
<thead>
<tr>
<th>Espécies presentes na água</th>
<th>Espécies presentes nos sedimentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachionus angularis</td>
<td>Brachionus angularis</td>
</tr>
<tr>
<td>Brachionus urceolaris</td>
<td>Brachionus angularis f. chelonis</td>
</tr>
<tr>
<td>Asplanchna sp.</td>
<td>Brachionus caudatus f. austrogenitus</td>
</tr>
<tr>
<td></td>
<td>Brachionus falcatus</td>
</tr>
<tr>
<td></td>
<td>Brachionus havanaensis</td>
</tr>
<tr>
<td></td>
<td>Brachionus urceolaris</td>
</tr>
<tr>
<td></td>
<td>Cephalodella stenroosi</td>
</tr>
<tr>
<td></td>
<td>Cephalodella innesi (?)</td>
</tr>
<tr>
<td></td>
<td>Dicranophorus sp.</td>
</tr>
<tr>
<td></td>
<td>Filinia longiseta</td>
</tr>
<tr>
<td></td>
<td>Hexanthera jenkinae</td>
</tr>
<tr>
<td></td>
<td>Lecane (M.) bulia</td>
</tr>
<tr>
<td></td>
<td>Lecane (M.) lunaris</td>
</tr>
<tr>
<td></td>
<td>Lyndia sp.</td>
</tr>
<tr>
<td></td>
<td>Rotaria sp.</td>
</tr>
</tbody>
</table>
Discussão

Várias espécies de rotíferos, além das que estavam presentes na coluna de água, ecolidiram. Isto mostra que a diapausa é de fundamental importância na manutenção destas espécies no ambiente, principalmente quando o açude seca completamente.

Quando chove, criam-se condições ambientais propícias para que algumas espécies voltem à vida ativa, mas o mesmo não ocorre para todas as espécies, que por vezes ecolidem, reproduzem, formam novos ovos de resistência e morrem logo a seguir (dados pessoais). Desta forma conseguem renovar os seus ovos de resistência, que possuem um tempo limite de viabilidade. Em ambientes temperados, os ovos de rotíferos são viáveis por meses ou anos quando mantidos sob baixas temperaturas (Gilbert, 1974, in Gilbert, 1995). A maioria dos ovos de resistência em rotíferos são originados por reprodução sexuada, mas Gilbert (1995) encontrou ovos de resistência produzidos por fêmeas amicticas. Estes ovos têm um tempo de viabilidade mais curto, de até algumas semanas e são produzidos quando há diminuição de alimento no ambiente, permitindo à espécie (neste caso Synchaeta pectinata) sobreviver a períodos curtos de falta de alimento.

A medida em que os ovos ecolidam nos 165 frascos, notou-se uma sequência constante na eclosão das espécies que pode estar diretamente relacionada com a qualidade do ambiente mantido nas culturas em laboratório ou com o tempo de eclosão característico de cada espécie.

A profundidade de 5 cm utilizada neste trabalho, não foi suficiente para detectar a presença de espécies ao longo dos anos. O quadrante 1 foi o único onde foi observada a eclosão do cladóceror Macrothrix sp (Crispim & Watanabe, no prelo). Neste quadrante a água não chega desde 1985. Logo podemos dizer que Macrothrix sp. encontra-se presente nos outros quadrantes em profundidades superiores. Neste quadrante nenhum rotífero ecidiu. Os ovos de resistência de cladóceros possuem um grande tempo de viabilidade, indo de 2 anos a 55 anos (Hairston & Cáceres, 1996). A espécie que apresenta a maior duração de viabilidade dos ovos de resistência ao longo do tempo citada na literatura é Macrothrix sp. Provavelmente os rotíferos possuem um período de durabilidade dos ovos de resistência menor, não suportando os 13 anos que os sedimentos do Quadrante 1 estão sem água, tendo resistido apenas o cladóceror Macrothrix sp.

Sabe-se mais acerca do número de ovos presentes nos sedimentos, fatores que induzem à eclosão desses ovos em laboratório, do que do recrutamento natural de ovos de resistência para a coluna de água e a maioria dos trabalhos é realizado com copépodes e cladóceros. Contudo, Mnatsakanova & Polishchuk (1996) escreveram o primeiro trabalho que quantificou a importância do recrutamento a partir de ovos partenogenéticos e de resistência em populações de Brachionus. Os seus resultados mostraram que apesar da emergência pelos ovos de resistência ocorrer ao longo de todo o período estudado, o nascimento por partenogênese foi muito mais importante. Isto foi observado num período de 3 meses, variando a temperatura de 14 a 24°C. Numa região, como no semi-árido Paraibano, em que os ambientes aquáticos são temporários, o papel dos ovos de resistência em rotíferos é fundamental, já que são estes os únicos ovos que resistem às condições extremas provocadas pela diminuição de água, seja por evaporação seja por consumo. A eclosão deste tipo de ovos é a única alternativa para a recolonização dos ambientes pelas diversas espécies.
Conclusões

Podemos concluir com este trabalho que encontrou-se mais espécies em forma de diapausa nos sedimentos, do que aquelas de forma ativa na coluna de água. Isto mostra a importância de também serem analisados os ovos de resistência nos sedimentos, principalmente em estudos de biodiversidade e ecológicos, e não apenas as espécies de forma ativa na água.

Referências citadas

Crismim, M.C. & Watanabe, T. What can dry sediments of a reservoir in a semi-arid region in Brazil tell us about cladocera? Hydrobiologia, (no preio).