DINÁMICA ECOLÓGICA DE *Aphanizomenon aphanizomenoides* (CYANOPHYTA, CYANOPHYCEAE) EN UN SISTEMA EUTRÓFICO TROPICAL

J. J. RAMÍREZ R

Universidad de Antioquia, Dpto de Biologia, Apartado aéreo 1226. Medellín, Colombia. E-mail: jjram@matematicas.udea.edu.co

RESUMO: Dinâmica ecológica de *Aphanizomenon aphanizomenoides* (Cyanophyta, Cyanophyceae) num sistema eutrófico tropical. *A. aphanizomenoides* é registrada pela primeira vez na Colômbia. Describe-se neste trabalho a dinâmica ecológica da espécie na lagoa do Parque Norte (6° 17’N, 75°33.4’W). Com esta finalidade foram feitos 19 amostragens quincenais entre abril de 1991 e janeiro de 1992 na sub-superfície e o fundo de uma estação de amostragem (profundidade média = 1,60m). Na dimensão temporal a espécie apresentou uma alta variação, disposição de contato e largura do nicho real equivalente a 74% do nicho fundamental. Estes valores foram ocasionados pelo bloom algal acontecido na época seca entre julho e outubro e que incrementou os valores de turbidez, amônia e clorofila a, e diminuiu os da razão zona fótica:zone afótica. Durante os meses de junho-agosto e setembro-novembro *A. aphanizomenoides* mostrou altas taxas de mudança, correspondentes a sua alta velocidade de crescimento. Como consequência do caráter polimíctico do corpo d’água, espacialmente a espécie estudada apresentou distribuição ao acaso, probabilidade incrementada de encontros intraespecíficos e uma largura máxima do nicho. As variáveis abióticas relacionadas com a ecológia da espécie e que apresentaram a máxima contribuição à suma de quadrados foram a razão zona fótica:zone afótica, P-PO₄, N-NH₄ e clorofila a. *A. aphanizomenoides* mostrou uma curva de crescimento unimodal e apresentou-se como uma espécie que combina características de estrategistas dos tipos R e S.

ABSTRACT: Ecological dynamics of *Aphanizomenon aphanizomenoides* (Cyanophyta, Cyanophyceae) in a tropical eutrophic system. *A. aphanizomenoides* is registered for the first time in Colombia. Its
population dynamics during one sampling year in lake El Parque Norte (6° 17’N, 75°33.4’W) is described. With this purpose, 19 fortnightly samplings between April 4th 1991 and January 27th 1992 were done at sub-surface and bottom depths at one sampling station (mean depth = 1.60 m). In temporal dimension A. aphanizomenoides showed high variation, contagious disposition and a real niche width equivalent to 74% of fundamental niche. These values were due to the algal bloom occurred between July and October during the dry season. As a consequence, values of turbidity, ammonia, chlorophyll a increased and those of the relationship euphotic zone to aphotic zone diminished. High shift velocities in growing rate were found in June-August and September-November. Spacially and as a consequence of the polimictic type of circulation occurring on this lake, A. aphanizomenoides showed random disposition, increased probability of intraspecific encounters and maximum niche width. The abiotic variables related to species ecology and with the highest contribution to square sum were photic-aphotic depth ratio, P-PO₄, N-NH₄, and chlorophyll a. A. aphanizomenoides showed an unimodal growing curve and presents characteristics of R and S strategists.

Key words: lagoon, Aphanizomenon, autecology, population dynamics, tropical phytoplankton.

INTRODUCCIÓN

El primer reporte publicado sobre cianofitas en territorio colombiano se debe a West (1914) quien identificó las algas colectadas por Mayor en 1910 en ambientes situados entre los 1550 y los 3600 msnm en los departamentos de Antioquia y Cundinamarca. Hasta 1998 se habían registrado en Colombia aproximadamente 121 taxa de este grupo, la mayoría localizados en la zona andina y en las tierras bajas (Duque, 1998).

En la mayoría de los estudios limnológicos publicados en el país y que incluyen a las cianofitas, a éstas no se les concede ningún tratamiento diferencial y son consideradas dentro de la comunidad algal (Ramírez & Machado, 1982; Molina, 1983; Arias, 1986; Ramírez, 1986; 1987; 1989; 1994; 2000a y b; Donato et al., 1987; 1996; Duque & Donato, 1988; 1992; Naundorf, 1990; Donato, 1991; Vega et al., 1992; Páramo & Pinilla, 1994; Guillot et al., 1995; Florido, 1998; Cárdenas & Florido, 1998; entre otros).

La dinámica de poblaciones es el estudio de las mismas como sistemas en actividad. Se aplica al estudio de las variaciones en la densidad, de los factores que influyen estas variaciones, de los cambios en las tasas de pérdidas y reposición de individuos, y de cualquier proceso regulador que tienda a mantener el tamaño de la población en equilibrio, o que por lo menos, evite una variación excesiva (Solomon, 1976). Los trabajos publicados sobre este tópico en Colombia para algas verde-azules son pocos; al respecto Ramírez (1994; 1996) describió la dinámica poblacional de las cianofitas Anabaenopsis elenkinii Miller 1923, A. hungarica
Hálasz 1939 y Cyanocatena biudoi Ramírez 1996 en la laguna del Parque Norte. Todas se comportaron como estrategas C, se mostraron agrupadas tanto en la superficie como en el fondo y sus cambios de densidad se asociaron a las variaciones en las concentraciones de nutrientes (fósforo soluble reactivo, nitratos y sulfatos). En todos los casos el principal factor limitante fue la luz; y la competición por la misma es menguada por la mezcla que impide la presencia de relaciones espaciales fijas entre los organismos.

Varias especies de Aphanizomenon ocurren frecuentemente en aguas salobres con salinidades menores de 20% e incrementan su densidad periódicamente en ecosistemas lenticos alcalinos, eutróficos y de poca profundidad, especialmente durante la época de estiagte (Steinberg & Hartmann, 1988; Olrik, 1994). La especie estudiada es un organismo adaptado principalmente a aguas lenticas eutróficas de países tropicales y subtropicales y, en menor grado, a zonas de altas latitudes (Horecká & Komárek, 1979).

El presente artículo tiene como objetivos registrar por primera vez la presencia de A. aphanizomenoides en el territorio colombiano, describir su dinámica poblacional espacio-temporal y los posibles factores ambientales relacionados con la misma.

MATERIAL Y MÉTODOS

Esta investigación forma parte de una mayor realizada entre abril 4 de 1991 y enero 27 de 1992 en la que se efectuaron 19 muestreos de periodicidad quincenal en dos profundidades (subsuperficie y fondo) de una sola estación de muestreo. Las muestras de agua fueron extraídas con una botella Kemmerer de 1 litro. De las variables estudiadas en el trabajo mencionado se escogieron precipitación pluvial (Empresas Públicas de Medellín, Sección Hidrometría), temperatura del aire (termómetro, precisión 0.1°C), razón zona fótica/zona afótica (numérico), temperatuta del agua (termómetro, precisión 0.1°C), conductividad eléctrica potenciométrica, turbidez (nefelométrico), N-NH₄ (nesslerización), N-NO₃ (ácido fenoldisulfónico), P-PO₄ (ácido ascórbico), CO₂ libre (a partir de pH y alcalinidad), alcalinidad total (disminución de pH hasta 4.35 con H₂SO₄ 0.02N), durcza total (titrimétrico del EDTA), pH (potenciométrico), clorofila a (solvente: metanol acetona 1:1, acidificación: HCl 4M, ecuación: Talling & Driver, 1963) y densidad del zooplancton...
por considerarse las más relacionadas con la ecología de la especie estudiada. Sus estadísticos de tendencia central (media aritmética) y dispersión (coeficiente de variación relativa de Pearson), se muestran en la Tab. I. El organismo estudiado aparece en la Fig. 1. La descripción de la laguna del Parque Norte (6° 17' Norte, 75° 33.4' Oeste) puede consultarse en Ramírez (1987; 1996) y Ramírez & Díaz (1994; 1995; 1996-1997).

Las muestras de fitoplancton fueron fijadas con KI-I₂. El conteo se llevó a cabo en un microscopio invertido Leitz Ortholux II en una cámara de Kolkwitz de 1 ml. Se contaron 30 campos en un aumento total de 400X. La densidad se reporta en ind.ml⁻¹ con base en la fórmula de Ros (1979).

La amplitud absoluta de nicho se estimó con el Indice de Shannon & Weaver (1949) y la amplitud teórica mediante el logaritmo natural del número de muestreos (19) o del número de profundidades (2). El valor obtenido de la razón entre ambos tipos de nicho permitió apreciar la porción del nicho fundamental ocupada por *A. aphanizomenoides*.

Para estimar la disposición (espacial y/o temporal) y el grado de contagio o agrupamiento de *A. aphanizomenoides* se usó el índice de Morisita (1959). La significancia estadística de los valores obtenidos con este índice se analizó con la prueba *t* de Student; la finalidad de la misma es aceptar o no la hipótesis de aleatoriedad (H₀: *Iₐ = 1*).

El porcentaje de encuentros intraespecíficos en la dimensión espacial se determinó con el Índice de correlación de Pearson, el cual se obtuvo con base en un diagrama de dispersión densidad en superficie-densidad en fondo. A partir de este mismo análisis se determinó el gado de agrupamiento de los meses de muestreo.

Con la finalidad de establecer un valor cuantitativo de las variaciones de densidad entre muestreos, se usó el Índice de Tasa de Cambio (*σₜ*) de Lewis (1978). A pesar de ser un índice utilizado básicamente en ecología de comunidades, su significado es similar aunque sea usado a nivel poblacional.

La tasa de crecimiento poblacional entre muestreos (*t*) fue calculada según Odum (1972). La velocidad de crecimiento (pendiente = *m*) en los cuatro intervalos citados para la Fig. 8 fue establecida mediante la expresión:

\[m = \frac{\%(t₂) - \%(t₁)}{(Δt)} \] (días⁻¹)

En esta investigación, la mortalidad bruta (*Mₜ*) debe interpretarse como una tasa de pérdidas conjuntas por incluir las ocurridas por lavado hidromecánico, sedimentación, herbivoria y muerte fisiológica que no fueron evaluadas separadamente. Se calculó con la expresión numérica propuesta en Rabinovich (1978).

La significancia de las diferencias de densidad entre profundidades se determinó a través de un análisis de varianza (anova) para diseño de bloques, usando el tiempo como variable de bloqueo, previo chequeo de normalidad, aleatoriedad y homogeneidad de varianzas para el factor profundidad. Esta variable fue normalizada usando transformación log(x + 1).
La intensidad de las diferencias de densidad entre muestreos se estableció a través de los valores del coeficiente de variación relativa de Pearson (CV).

La determinación del nivel de dependencia entre la densidad del taxón y las variables ambientales citadas se llevó a cabo mediante un análisis de regresión y correlación lineal múltiple. La normalidad de las variables involucradas fue chequeada y en caso de no justarse a ella, se aplicó transformación log a los datos originales. La regresión entre la densidad y las variables pluviosidad, clorofila a y el log(razón zona eufótica/zona afótica), se trabajó con valores medios y un n = 19. En el caso de las demás variables se trabajó con un tamaño muestral de 38 datos.

Los valores de los estadísticos de tendencia central, dispersión absoluta y relativa, los análisis de varianza y los de regresión se efectuaron en el paquete estadístico Statgraphics, versión 5.0.

RESULTADOS

Anapaenodomus (Fig. 1) se registra por la primera vez para Colombia. Dicho reporte se lleva a cabo con base en la confrontación de la lista suministrada por Duque (1998).

La laguna del Parque Norte es un cuerpo de agua poco profundo, activamente mezclado y turbio (Ramírez, 1987; Ramírez & Díaz, 1994; 1995), perteneciente al tipo cinético descrito en Reynolds (1994). Según este autor, en estos sistemas tanto las algas como otras partículas sestónicas están sujetas diariamente a una dosis errática de luz, por lo que deben reajustar constantemente su posición y, en el caso de las algas, fotoadaptarse.

Este sistema presentó a lo largo del estudio concentraciones altas y variables de turbidez y nutrientes; altas y poco variables de conductividad eléctrica, pH, dureza y alcalinidad totales y bajas y altamente variables de CO₂ (Tab. I).

El Anova efectuado para las diferencias de densidad mostró diferencias significativas entre los meses de muestreo (F = 3.92, p = 0.0029), resaltadas por el alto valor del coeficiente de variación (127.9%). Estas diferencias son debidas al incremento mostrado entre los meses de julio y octubre (Fig. 5).

Entre profundidades las diferencias de densidad no fueron significativas (F = 0.312, p = 0.5892); dicha ausencia se relaciona con su disposición vertical aleatoria, su bajo coeficiente de variación, y la correspondencia entre el nicho real y el fundamental (Tab. II)

El análisis de agrupamiento formó dos grupos: el primero de ellos, localizado cerca al origen del plano de dispersión, agrupó aquellos muestreos donde se presentaron densidades bajas; en el segundo se situaron los muestreos en que se incrementó la densidad de *Anapaenodomus* (Fig. 2).

Observando la Fig. 3 se concluye que las mayores tasas de cambio se presentaron entre julio-agosto y septiembre-noviembre, correspondientes a variaciones en las tasas de crecimiento y pérdidas presentadas en la Fig. 4. La
Tabla I. Laguna del Parque Norte, Medellín, Colombia. Valores de los estadísticos de posición y dispersión relativa para las variables ambientales medidas

<table>
<thead>
<tr>
<th>Variable</th>
<th>Profundidad</th>
<th>Media</th>
<th>CV (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitación pluvial</td>
<td>-----</td>
<td>56.5</td>
<td>73.3</td>
<td>19</td>
</tr>
<tr>
<td>Temperatura del aire</td>
<td>-----</td>
<td>25.7</td>
<td>11.5</td>
<td>19</td>
</tr>
<tr>
<td>Temperatura del agua</td>
<td>S</td>
<td>26.7</td>
<td>5.2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>23.7</td>
<td>4.2</td>
<td>19</td>
</tr>
<tr>
<td>Turbidez</td>
<td>S</td>
<td>25.0</td>
<td>49.2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>28.8</td>
<td>30.9</td>
<td>19</td>
</tr>
<tr>
<td>$z_{1,01}/z_{0,01}$</td>
<td>-----</td>
<td>1.1</td>
<td>54.3</td>
<td>19</td>
</tr>
<tr>
<td>Conductividad eléctrica</td>
<td>S</td>
<td>2146.3</td>
<td>11.1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>2154.2</td>
<td>11.3</td>
<td>19</td>
</tr>
<tr>
<td>CO₂ libre</td>
<td>S</td>
<td>1.0</td>
<td>104.2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>1.1</td>
<td>121.7</td>
<td>19</td>
</tr>
<tr>
<td>pH</td>
<td>S</td>
<td>8.9</td>
<td>4.5</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>8.9</td>
<td>5.6</td>
<td>19</td>
</tr>
<tr>
<td>Alcalinidad total</td>
<td>S</td>
<td>5.3</td>
<td>11.3</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>5.4</td>
<td>9.8</td>
<td>19</td>
</tr>
<tr>
<td>Dureza total</td>
<td>S</td>
<td>154.5</td>
<td>5.9</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>158.1</td>
<td>6.5</td>
<td>19</td>
</tr>
<tr>
<td>N-NH₄</td>
<td>S</td>
<td>560.0</td>
<td>33.5</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>553.6</td>
<td>31.2</td>
<td>11</td>
</tr>
<tr>
<td>N-NO₃</td>
<td>S</td>
<td>81.3</td>
<td>34.9</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>86.3</td>
<td>43.6</td>
<td>17</td>
</tr>
<tr>
<td>P-PO₄</td>
<td>S</td>
<td>29.2</td>
<td>77.2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>29.4</td>
<td>82.4</td>
<td>19</td>
</tr>
<tr>
<td>Clorofila a</td>
<td>-----</td>
<td>64.2</td>
<td>91.1</td>
<td>19</td>
</tr>
</tbody>
</table>

S = superficie; F = fondo; CV = coeficiente de variación; n = número de datos

Tabla II. Laguna del Parque Norte, Medellín, Colombia. Valores de los estadísticos utilizados para explicar la variación espacio-temporal de A. aphantizomenoides.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Temporal</th>
<th>Espacial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño muestral</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Media aritmética muestral</td>
<td>271062.3 ind/ml</td>
<td>271062.3 ind/ml</td>
</tr>
<tr>
<td>CV (%)</td>
<td>127.9</td>
<td>5.1</td>
</tr>
<tr>
<td>I_0</td>
<td>2.54</td>
<td>1.0</td>
</tr>
<tr>
<td>t_c</td>
<td>13.86***</td>
<td>0.0</td>
</tr>
<tr>
<td>$t_{0.01,19}$</td>
<td>3.92</td>
<td>—</td>
</tr>
<tr>
<td>$t_{0.05,1}$</td>
<td>—</td>
<td>12.71</td>
</tr>
<tr>
<td>Niche real</td>
<td>2.18</td>
<td>0.69</td>
</tr>
<tr>
<td>Niche fundamental</td>
<td>2.94</td>
<td>0.69</td>
</tr>
<tr>
<td>Niche real/Nicho fundamental (%)</td>
<td>74</td>
<td>100</td>
</tr>
<tr>
<td>Porcentaje de encuentros intraespecíficos</td>
<td>—</td>
<td>69</td>
</tr>
</tbody>
</table>

n = número de datos; número total de individuos; CV = coeficiente de variación; I_0 = índice de Morisita; t_c = valor calculado del estadístico t de Student; $t_{0.01,19}$, $t_{0.05,1}$ = valores tabulados del estadístico t de Student; n.s. = no significativo a un p mayor de 0.05; *** = significativo a un p menor que 0.001
Figura 2: Laguna del Parque Norte, Medellín, Colombia. Diagrama de dispersión obtenido para la densidad.

Figura 3: Laguna del Parque Norte, Medellín, Colombia. Variación temporal de la tasa de cambio poblacional de *A. aphanizomenoides*.
Figura 4: Laguna del Parque Norte, Medellín, Colombia. Variación temporal de la tasa de replicación (r) y la tasa de pérdidas (M₀) de A. Aphanizomenoides.

Figura 5: Laguna del Parque Norte, Medellín, Colombia. Cambios en la temperatura del aire, la pluvisodad (%) y la densidad absoluta de A. aphanizomenoides en la laguna del Parque Norte. CVₚ y CVₚₚ = coeficientes de variación de la temperatura del aire y la pluviometría.
población de *A. aphanizomenoides* se presentó por debajo del valor medio de densidad en dos periodos del tiempo de muestreo (Tiempos I y III, Fig. 5) que conformaron el grupo de menor densidad en la Fig. 2, y las menores tasas de cambio y de pérdidas en las Fig. 3 y 4.

La disposición temporal hallada para la especie estudiada fue de contagio, mostrada por los valores significativamente mayores que 1 del Índice de Morisita (2.54, p < 0.001, n = 19, Tab. II); además, los valores de los índices de agrupamiento (1.54) y del coeficiente de variación (127.9%) corroboran el tipo de disposición hallada. El valor de la amplitud del nicho real en la dimensión tiempo fue relativamente alto y equivalente al 74% del nicho fundamental de la especie. Todos estos valores indican altos desvíos del valor medio de densidad, debidos al incremento de la especie en la época seca (Fig. 5).

En el espacio, la disposición de la especie fue aleatoria, ocupando el 100% de su nicho en esta dimensión. Consecuentemente, el número de encuentros intraespecíficos fue relativamente alto ($c^2 = 0.69$), indicando aparentemente un alto grado de competición intraespecífica.

La época de mayor densidad de *A. aphanizomenoides* coincidió con incrementos en el N-NH$_4$ y en la clorofila; la contribución de ambos factores a la suma de cadrados fue relativamente baja (19.2% y 13.6% respectivamente). Coincidieron además con disminuciones en el log(z_{estim}/z_{eval}) y el log(P-PO$_4$); ambas variables tuvieron contribuciones altas a la suma de cuadrados, siendo ligeramente mayor la de la razón citada (86.4% contra 84.9% de la forma soluble del fósforo). Las ecuaciones de regresión obtenidas para estas variables y sus respectivos estadísticos de significancia se citan en la Fig. 6. El incremento de la especie estudiada también coincidió con aumentos en la densidad de *Thermocyclops decipiens* y *Brachionus plicatilis* (Fig. 7).

En la Fig. 8 se observa que durante el periodo de incremento de la cianoflora estudiada (junio-noviembre) tanto la profundidad de la zona fótica (z_{ud}) como la altura de la zona de mezcla (z_{m}) disminuyeron gradualmente hasta presentar sus menores valores en el intervalo agosto-septiembre, cuando la densidad de *A. aphanizomenoides* se incrementó al máximo. Puede observarse además que en este mismo periodo el ecosistema presentó una mayor estabilidad térmica.

En la laguna del Parque Norte, el taxón investigado mostró una curva poblacional con crecimiento de tipo unimodal que presenta, al igual que otras poblaciones, velocidades diferenciales de crecimiento en distintos intervalos de tiempo (Fig. 9). Su velocidad media de crecimiento (0.38d$^{-1}$, estimada con base en los datos de campo) fue menor que la de *Microcystis aeruginosa* (citado como ejemplo típico de un estratega S) y estimada en laboratorio a 20°C como de 0.8d$^{-1}$, y muy inferior a la de *Synechococcus* (reconocido estratega C), cuyo valor es de 7.97d$^{-1}$ (O’Lrlik, 1994). El intervalo de crecimiento exponencial para *A. aphanizomenoides* se desarrolló en aproximadamente dos meses y medio, correspondientes al 13.1% del tiempo total de muestreo. La resistencia ambiental fue ejercida por el efecto combinado de factores dependientes de la densidad
Figura 6: Laguna del Parque Norte, Medellín, Colombia. Efecto de los componentes significativos en el modelo de regresión múltiple y sus respectivas ecuaciones.

Figura 7: Laguna del Parque Norte, Medellín, Colombia. Variación porcentual de B. plicatilis, T. decipiens y nauplios a lo largo del tiempo de muestreo.
Figura 8: Laguna del Parque Norte, Medellín, Colombia. Variación de la profundidad de la zona eufótica (---) y de las isólines de temperatura del agua.

Figura 9: Laguna del Parque Norte, Medellín, Colombia. Modelo gráfico de la dinámica poblacional de *A. aphanizomenoides*. \(r \) = tasa de crecimiento, \(M_b \) = tasa de pérdidas, \(q_e \) = tasa de cambio poblacional, \(z_{eu} \) = profundidad de la zona eufótica y \(z_{mix} \) = profundidad de la zona de mezcla (profundidad fótica, concentración de nutrientes y CO\(_2\), pH y herbivoria) e independientes de la misma (pluviosidad, temperatura, profundidad de la zona de mezcla y flujo hidromecánico).
DISCUSION

En otras circunstancias, el alto porcentaje de encuentros intraespecíficos encontrado para A. aphanizomenoides en la dimensión vertical podría ser interpretado como indicador de alta competición, mas por la característica polimictica del ambiente en cuestión y la alta oferta de nutrientes, no puede dársele esta connotación. Estos valores son más una consecuencia del movimiento constante al que están sometidas las partículas, lo que aumenta el número de encuentros entre las mismas, las distribuye aleatoriamente y amplía la utilización del espectro de recursos.

Las diferencias de densidad entre muestreos son características de organismos adaptados a ambientes fluctuantes que aprovechan los cambios en las condiciones ambientales para incrementar su tasa de crecimiento en los períodos favorables. La dinámica de éstos se describe a continuación.

La regulación poblacional a niveles bajos de densidad en los Tiempos I y III fue facilitada por 1) el aumento del componente de flujo hidromecánico de la tasa de pérdidas como consecuencia del incremento en la pluvisidad, el cual pudo ser superior a la tasa de crecimiento efectiva; 2) la influencia de la predación por nauplos y adultos de T. decipiens; y 3) el hecho de que la comunidad fitoplanctónica se encontrara en un momento sucesional que favorecía competitivamente a otras poblaciones distintas de la estudiada.

Aunque en el período abril-junio (Tiempo I) el rotífero B. plicatilis, considerado dominante en este ecosistema (Ramírez, 1987; Ramírez & Díaz, 1996-1997) representó el mayor porcentaje del zooplancton presente, su influencia en la tasa de crecimiento de la población estudiada no fue considerable ya que las tasas de pérdidas en este periodo fueron las menores. Esto se debe a que aunque los filtradores pueden llegar a pastorear organismos filamentosos, no los asimilan eficientemente (Shapiro, 1990). Además, es un hecho aceptado que el morfotipo filamentososo dificulta el pastoreo por el zooplancton filtrador (González, 1988; Reynolds, 1988).

En el Tiempo II, B. plicatilis compartió su dominio con los nauplos y adultos de T. decipiens, copépodo de conducta raptorial reconocida. En este período, puede verse que las tasas de crecimiento y pérdidas presentaron respectivamente valores negativos y positivos. Este último hecho permite pensar en la influencia restrictiva de las formas larvales y adultas de T. decipiens en la tasa de crecimiento de A. aphanizomenoides. Sin embargo, a pesar de que T. decipiens presentó densidades relativamente altas durante el período de mayor densidad de Aphanizomenon (Tiempo II), la tasa de crecimiento de éste consiguió superar las pérdidas ocasionadas por herbivoría. Por ello, las pérdidas por este factor, pueden considerarse bajas.

La llegada del período seco y el incremento de la acción del viento constituuyeron perturbaciones alogénicas que permitieron el surgimiento de condiciones apropiadas para el aumento de la población estudiada por encima del
valor medio (Tiempo II). En este momento, y hasta el mes de octubre, la población de esta especie alcanzó su mayor velocidad de crecimiento, lo que le permitió excluir a las demás poblaciones algas. Esto ocurrió básicamente: 1) porque las poblaciones competidoras no se incrementaron a la misma velocidad que A. aphanizomenoides; 2) porque las condiciones pobres de luz y la circulación “continua” son factores que según Jacobsen (1994) conducen a la dominancia de algas verde azules; 3) por el mejor aprovechamiento del período en que el sistema se “enriqueció” por la carga de nutrientes provenientes del período previo de lluvias; y 4) por las altas temperaturas, los altos valores de pH y las bajas concentraciones de CO₂ libre. Estas dos últimas condiciones son una consecuencia de dicho aumento. Debe considerarse también como una posible explicación de este incremento el que numerosas especies de cianofitas, entre las cuales se cuenta A. aphanizomenoides, producen esporas de reposo (aquinetes) que pueden encontrarse en grandes cantidades en el sedimento y que bajo condiciones favorables germinarán para luego migrar al plancton. Si se considera que las posibles fuentes alóctonas de organismos en la laguna del Parque Norte son despreciables, esta hipótesis cobra fuerza.

La habilidad de las cianobacterias para competir a bajas concentraciones de CO₂ y altos valores de pH, condiciones halladas en el sistema estudiado, ha sido argumentada como el proceso por el cual los organismos de este grupo alcanzan su dominancia (King, 1970; Shapiro, 1973; 1990). Por esto, los blooms de cianobacterias se asocian generalmente con aguas ricas en HCO₃⁻, considerándose a las cianobacterias vacuoladas como particularmente sensibles a la acidificación (Klemer & Cullen, 1996). Klemer (1991) considera que en lagos enriquecidos y con bajas concentraciones de carbono inorgánico disuelto, las especies vaquoladas y fijadoras de nitrógeno del tipo de A. aphanizomenoides, se desempeñan mejor que aquellas cianofíceas vacuoladas que requieren nitrógeno fijado.

Aunque los valores de temperatura del agua registrados a la hora de las colectas mostraron (al igual que la temperatura del aire) leves disminuciones para la época del aumento de A. aphanizomenoides, los mismos no llegaron a ser inferiores a los valores entre 20.0 y 21.0 °C registrados por Shapiro (1990) y Steinberg & Hartmann (1988) como favorables para el aumento de esta especie.

En la zona tropical, la acción del viento se incrementa generalmente durante la época seca (Viner & Smith, 1973; González, 1988). Este hecho aumentó la concentración de material resuspendido que conjuntamente con el incremento de la especie estudiada ocasionaron en la laguna la disminución de los valores de la razón Zₑ/Zₛ (pendiente = 1.75, p = 0.0164). Además, considerando que durante el período de aumento de A. aphanizomenoides la profundidad de la zona eufótica fue menor que aquella de la zona de mezcla, tiene que concluirse que el alga estudiada permaneció gran parte del tiempo en la oscuridad y expuesta a condiciones cambiantes de luz, es decir, estuvo sometida a un estrés lumínico considerable (Reynolds, 1984; Olrik, 1994). La respuesta fotoadaptativa más obvia consistiría en el aumento de la concentración de clorofila (pendiente = 0.03, p =
con el fin de interceptar y “cosechar” una mayor proporción del flujo de fotones incidente, contrarrestando así el efecto del fotoperíodo. Probablemente, *A. aphanizomenoides* incrementó su concentración de pigmentos accesorios, fícocianinas y ficoeritrinas, para absorber en otras partes del espectro visible y transferir la energía absorbida a la clorofila (Kirk, 1994; Reynolds, 1994). Es necesario recalcar que las algas verde-azules compiten mejor por luz que las algas verdes eucarióticas (Shapiro, 1990). La regulación de la flotabilidad confiere ventajas respecto al acceso a la luz, ya que permite a las cianobacterias vacuoladas prevalecer sobre otras especies, aún sobre aquellas con cinéticas de aprovechamiento superior para un nutriente limitante particular (Klemer & Cullen, 1996).

La captación de luz es aumentada por la forma larga y delgada de las células del filamento de *A. aphanizomenoides* que garantiza una mayor superficie de exposición (Kirk, 1976) y las constituye como buenas ‘antenas de luz’; por ello, en los ambientes cinéticos estas formas tienen las mejores capacidades adaptativas de cualquier alga sometida a promedios bajos de insolución. La mejor preadaptación morfológica para proveer una buena antena de luz es aquella que coloca el pigmento fotosintético en la máxima área de sección cruzada del campo de luz, lo que es logrado, al menos teóricamente, por las células pequeñas, las formas aplanadas, las formas aciculares y los filamentos. En los ambientes cinéticos y turbios como el presente, las cianobacterias filamentosas solitarias son ampliamente favorecidas por las fuerzas selectivas por presentar las mayores capacidades adaptativas de cualquier alga a la insolución media baja, y un tamaño que las hace no ingeribles por el zooplancton (Reynolds, 1988; Reynolds, 1994).

Debido a que la absorción de fosfatos representa una fuente de energía inmediata para la división celular, durante el periodo de incremento de *A. aphanizomenoides* se registró una relación inversamente proporcional con los ortofosfatos (pendiente = - 3.18, p = 0.0001).

Las cianofíceas en general son incapaces de utilizar nitrato, usando sólo cuando otras fuentes de nitrógeno están agotadas (Blouqvist et al., 1994), por ello, con el amonio la relación hallada fue directa y significativa (pendiente = 0.009, p = 0.0022). Según Spencer & King (1987) cuando aumenta la concentración de nitrógeno inorgánico aumenta también la flotabilidad de las algas vacuoladas del tipo del organismo estudiado. Posiblemente, el hecho de que el N-NH4 represente la mayoría del nitrógeno inorgánico, sea la causa de la relación directa entre este último y el incremento en la densidad del alga estudiada.

Por las características del ambiente donde se localiza la especie, puede considerarse que *A. aphanizomenoides* es más un estratega R (especie “aclimatable” , tolerante o dependiente de la mezcla según Reynolds, 1997). Estos organismos poseen tamaño medio a grande, razón S/V relativamente alta, alta incorporación de nutrientes y altas tasas de crecimiento, son especies filamentosas, parcialmente resistentes al pastoreo y adaptadas a perturbaciones físicas y a altas concentraciones de nutrientes. Comparte además algunas características de los estrategas S como son las adaptaciones para protegerse contra la fotoinhibición, la adaptación a altas
temperaturas y el aumentar en periodos de mayor estabilidad cuando disminuye la profundidad de la zona de mezcla (Olrik, 1994). Este último autor enfatiza que especies individuales de fitoplancton pueden presentar ciertas características que las sitúan en una estrategia dada (C, R o S) y otras que la coloquen en otra, pudiendo entonces presentarse formas sobrepuestas.

CONCLUSIONES

1. _A. aphanizomenoides_ es reportado por primera vez para Colombia. Es un organismo fitoplanctónico aclimatable, tolerante o dependiente de la mezcla (tipo R) que comparte algunas de las características de un estratega de almacenamiento del tipo S. Su morfotipo filamentososo lo protege de las pérdidas poblacionales por herbivoria.

2. En la dimensión tiempo este taxón presentó un periodo de mayor densidad en la época seca; por ello, su disposición temporal fue de contagio, su coeficiente de variación relativa alto y su nicho amplio. Este incremento se relacionó con aumentos de clorofila y amonio y con disminuciones en el CO$_2$ libre, la razón zona eufótica/zona afótica y el fósforo soluble reactivo; de estos, los factores que más contribuyeron a la variación en la densidad de la especie fueron los dos últimos.

3. La polimixis imperante en el sistema aumentó el número de encuentros intraespecíficos, por lo que la amplitud de nicho de la especie estudiada fue mayor en el eje vertical, la disposición espacial aleatoria y el coeficiente de variación bajo. La cinesis del ambiente fuerza la fotoadaptación del organismo, la cual se lleva a cabo mediante el aumento de la clorofila y los pigmentos accesorios, y por la regulación de su flotabilidad.

AGRADECIMIENTOS

Este trabajo forma parte del proyecto “Estudio limnológico de la Laguna del Parque Norte” financiado por el Centro de Investigaciones de la Facultad de Ciencias Exactas y Naturales (CIEN) de la Universidad de Antioquia (Proyecto # IN 36CE). El autor agradece la ayuda de Célia Sant’Anna y Maria Teresa de Paiva Azevedo del Instituto de Botánica de São Paulo, Brasil en la identificación de la especie.

REFERENCIAS CITADAS

Ramírez, J. J. 1989. Variación vertical del fitoplancton y parámetros fisicoquímicos en cuatro embalses del oriente antioqueño y su relación con el área, edad, altitud y tiempo de residencia media del agua. Medellín, Universidad de Antioquia, 203 p (Disertación).

