AVALIAÇÃO ECOLÓGICA DO ARROIO VELHACO, RS
HAASE, J. *; SCHÄFER, A. **

Resumo
O presente trabalho tem como objetivo comparar duas abordagens de avaliação do impacto ambiental em águas superficiais: zoneamentos ecológicos e índices da qualidade da água. Os resultados e as conclusões apresentados têm como base os levantamentos realizados mensalmente entre julho de 1984 e julho de 1985. O objeto dos estudos - o arroio Velhaco - localiza-se em uma área caracterizada pelo desenvolvimento de atividades agropecuárias, com seu trecho superior percorrendo uma região montanhosa e seu trecho inferior uma região de planície.

No zoneamento ecológico, foi utilizada a análise de similitudes entre os seis locais de coleta, baseada nas suas características morfo-hidrológicas (largura, profundidade, declividade egranulometria do sedimento), físico-químicas (saturação de oxigênio, pH, nitrito, condutividade, DBO₅, DOQ, fósforo total, alcalinidade e sólidos suspensos) e biológicas (macrozoobentos e ictiofauna). Esta abordagem mostra a diferenciação do arroio em rítmal, zona de transição e potamal, enquanto a avaliação da qualidade da água baseada no índice de LIEBMANN modificado resulta em uma classificação uniforme do arroio.

Abstract - ECOLOGICAL EVALUATION OF VELHACO CREEK, STATE OF RIO GRANDE DO SUL, BRAZIL.

In this paper are compared two methods of evaluation of human impact in surface waters: ecological zonation and water quality index. Results and conclusions presented here are based on data collected monthly from July 1984 to July 1985.

The study subject, Velhaco Creek, crosses agricultural and pasture lands with its upper course flowing through a moderately hilly region and its lower course flowing through a floodplain. In the ecological zonation, was used a similarity analysis for the six sampling stations, based on morpho-hydrological (depth, width, declivity, bottom configuration), physico-chemical (oxygen saturation, pH, nitrate, conductivity, BOD₅, COD, total phosphorus, suspended solids, alkalinity) and biological criteria (benthos, fish communities). This approach displayed a division of Velhaco Creek in rhithron, transition zone and potamom, while evaluation of water quality based on an adaptation of the LIEBMANN index resulted in a uniform classification.

**Universidade Federal do Rio Grande do Sul, Centro de Estudos Costeiros, Limnológicos e Marinhas.
Introdução

A Laguna dos Patos constitui o maior sistema de águas lagunares da América do Sul, representando 25% da planicie costeira do Rio Grande do Sul. Suas águas têm origem principal na bacia hidrográfica do Guaiuba, área mais estudada por apresentar alta densidade demográfica. Uma parte menos estudada é a contribuição das águas de drenagem do escudo cristalino, por contribuintes importantes como o rio Camaquã e arroio Velhaco. Este arroio foi escolhido como objeto de estudo por ser um ambiente típico e representativo desta área, caracterizada pelo desenvolvimento intensivo de atividades agropecuárias. Trata-se de uma região pouco conhecida sob o ponto de vista ecológico, sendo importante sua caracterização.

O trabalho tem como objetivo contribuir ao conhecimento da limnologia regional através da aplicação e discussão do significado das seguintes abordagens de interpretação: descrição ecológica, baseada na similaridade de fatores abióticos e comunidades, e avaliação da qualidade da água, baseada no balanço de oxigênio.

Material e métodos

1. Descrição da área e determinação dos locais de amostragem.

O arroio Velhaco localiza-se no Estado do Rio Grande do Sul, Brasil, servindo de divisa dos municípios de Tapes e Camaquã (Fig. 1). Suas nascentes encontram-se na Serra do Sudeste, a aproximadamente 400m de altitude e a desembocadura ocorre na Laguna dos Patos a uma altitude aproximada de 3m.

Os termos geológicos pertencem à província costeira do Rio Grande do Sul, que é constituída por grandes domínios distintos: o Embasamento e a Bacia de Pelotas (VILLWOCK, 1984). O primeiro, também denominado Escudo Cristalino Sulriogrândense, é uma área soerguida, de relevo suavemente ondulado. A borda cristalina, rebaixada e interiorizada, permitiu a formação de um litoral amplo, baixo e retílineo com grandes restingas que barram as lagoas costeiras (MOREIRA & LIMA, 1977).

Quanto aos aspectos climáticos, a região apresenta um clima do tipo temperado mesotérmico superumido sem estação seca (NIMER, 1977). É uma região privilegiada pela altura e regularidade do regime anual de precipitação pluviométrica, onde se encontra uma forte tendência ao clima mediterrâneo.

A influência antrópica principal é decorrente do desenvolvimento intensivo de atividades agropecuárias, que causam perturbações físicas, alterações no regime hidrológico, e químicas, introdução de fertilizantes e biocidas. O aporte de poluição doméstica é pouco expressivo e não existe poluição industrial.

O trecho superior do arroio percorre uma região montanhosa, onde predomina o cultivo de fumo, que gera um grande desmatamento, devido ao uso da lenha como fator energético para a secagem das folhas. As margens são constituídas por barrancos erodidos, recobertos por mata ciliar e observa-se ausência de vegetação aquática. Aliado a estas características, existem pequenas represas desativadas, que obstruem e desviam o leito do arroio. Em consequência, no inverno, com o aumento da pluviosidade, ocorre o alagamento de vales férteis.

O trecho inferior percorre uma zona de várzea onde predominam as lavouras de arroz alternadas com pecuária de corte. As margens são constituídas por barrancos ou áreas mais
espraiadas e pode-se observar alguns remansos com pouca vegetação aquática, à exceção da foz que é o único local com presença significativa deste tipo de vegetação. As águas do arroio são utilizadas basicamente para irrigação, o que dificulta a delimitação da bacia de drenagem, em função da existência de grande número de canais e açudes conectados. No verão, com a diminuição da pluviometria e o desvio das águas para a irrigação, diminui muito o volume de água no arroio, chegando quase a secar em alguns trechos.

As condições hidrológicas, a configuração da vegetação e os diferentes usos do solo e da água mostram a necessidade de diferenciar o arroio em duas regiões distintas: região superior ou de montanha (das nascentes ao km 24) e região inferior, de várzea ou de planície (do km 24 à foz). Estes critérios serviram de base para a determinação dos seis locais de amostragem (Fig. 1): V1 e V2 no afluente esquerdo e V3 no afluente direito, caracterizando a região superior. V4 na região de transição, V5 na região de várzea e V6 na foz do arroio.

2. Morfometria e velocidade da água.

Dados morfométricos das secções transversais do arroio foram obtidos através de transectos, com leitura da profundidade em régua nos períodos de cheia e estiagem. As demais medidas
morfométricas foram baseadas em mapas na escala 1:50 000 do Exército Brasileiro. O valor da velocidade média foi obtido através da medição da velocidade superficial, corrigida pelo fator 0.8 (SCHÄFER, 1985).

3. Coletas e análises da água e do sedimento.

As amostras de água foram coletadas na superfície da parte central do arroio nos seis pontos de amostragem, com frequência mensal, durante o período de julho de 1984 a julho de 1985, com amostragens complementares até janeiro de 1986. O oxigênio, o pH e a condutividade elétrica específica foram medidos com potenciômetros. A alcalinidade e o fósforo total (método ácido ascórbico) foram determinados segundo GOLTERMAN (1978), a DBO₅, a DQO (método de dicromato de potássio) e os sólidos suspensos (filtro de membrana 45 µm) segundo APHA (1976) e o nitrito (método de Na-saliciílato) segundo STRICKLAND & PARSONS (1968).

As coletas de sedimento foram realizadas em janeiro de 1985, com draga tipo Birge-Ekman, na parte central do arroio nas seis estações de amostragem e nas margens das estações mais próximas à nascente e a foz. A análise e interpretação granulométrica segue SUGUIJO (1973).

4. Levantamentos biológicos.

Os quatro levantamentos da fauna aquática foram realizados sazonalmente durante o ano de 1985. As coletas qualitativas da fauna bentônica foram realizadas com metodologia adequada aos diversos biótopos encontrados. A identificação dos moluscos dulceaquícolas foi realizada pela Fundação Zoobotânica do Estado do Rio Grande do Sul e os demais grupos foram identificados através de bibliografia especializada. Os instrumentos utilizados para a coleta de peixes foram dois picaréis, um com abertura de malha de 12mm e outro de 1,5mm. A identificação foi realizada pelo Laboratório de Ictiologia do Departamento de Zoologia da UFRGS.

Resultados e discussão

1. Zoneamento ecológico.

Em corpos de água lóticos, o intercâmbio energético ou de nutrientes em distintos níveis tróficos acontece no sentido horizontal, das nascentes para foz, caracterizando diferentes habitats associados às respectivas comunidades. Morfologicamente, os rios podem ser divididos em dois grandes grupos, arroios de montanha e rios de planicie, diferenciados entre si por critérios como declividade, forma do vale, velocidade da água, granulometria do sediment e processos de erosão e acumulação. A maioria dos rios, entretanto, apresenta uma mistura destes dois tipos extremos (SCHÄFER, 1985).

O perfil de declividade do arroio Velhaco mostra sua diferenciação num trecho superior, de maior declividade, percorrendo uma região de montanha, e num trecho inferior, que percorre uma região de várzea (Fig. 2). A forma dos vales também é um critério que diferencia os cursos superior e inferior do arroio (Fig. 3).

O arroio apresenta-se mais estreito na região de montanha, com uma largura aproximada de 13m, e mais largo na várzea, variando de 28 a 80m na época de cheia. A profundidade máxima média é de aproximadamente 1m em toda sua extensão, à exceção da foz, que apresenta uma profundidade máxima média de 3m.

CALLIARI et al. (1977) utilizaram a relação entre a granulometria média e o grau de seleção como um critério de classificação espacial de sedimentos. A figura 4 mostra esta relação no arroio Velhaco, onde pode-se observar a existência de dois grupos distintos: o primeiro (A)
Figura 2 - Perfil de declividade do arroio Velhaco.
Afluentes A - F encontram correspondência na figura 1.

Figura 3 - Tipos de vales encontrados no arroio Velhaco.
A velocidade da água é semelhante em todo seu percurso, apresentando um valor médio de 0,6 m/seg, considerada por HAWKES (1975) como muito forte.
Figura 4 - Relação entre o diâmetro (M_z) e o desvio padrão gráfico inclusivo (S_z, ϕ) do sedimento nos seis pontos de amostragem (V1 - V6). C = coletas no centro do arroio; M = coletas na margem do arroio.

Figura 5 - Perfis transversais do arroio Velhaco nas seis estações de amostragem nas épocas de cheia (-----) e estiagem (-->).
caracteriza-se por um regime fluvial unidirecional e o segundo (B) constitui-se da mistura de sedimentos de ambientes de alta e baixa energia.

O arroio Velhaco caracteriza-se por um regime fluvial, onde a vazão é determinada pela variação da precipitação durante o ano. Assim, há uma grande variação nos perfis transversais do arroio quando comparamos as épocas de cheia e estiagem (Fig. 5). A secção transversal medida na época de cheia apresentou valores de 7 a 52,4 m². Na época de estiagem, os valores encontrados foram menores, de 4,2 a 8,6 m², sendo que o local de amostragem V5 apresentou a redução mais acentuada, alcançando 99,9% em função do uso intensivo da água para irrigação.

A zonação ecológica de um arroio, além destes critérios, deve considerar o teor de oxigênio dissolvido, a temperatura da água, as oscilações diárias e anuais de temperatura e oxigênio, as substâncias em suspensão, o consumo de oxigênio, a carga de nutrientes, o desenvolvimento de comunidades autóctones e a distribuição de formas bióticas adaptadas (SCHÄFER, 1985).

A tabela I apresenta os resultados das análises químicas realizadas. De forma geral, pode-se dizer que o arroio apresenta boas condições de oxigenação, com consumo de oxigênio relativamente baixo, é uma água pobre em eletrólitos, com pH próximo à neutralidade e pouca alcanilidade.

A presença de substâncias em suspensão é consequência de processos de erosão decorrentes do desmatamento e uso agrícola do solo. A quantidade de sólidos suspensos encontrada no arroio Velhaco é baixa e assegura um nível moderado de proteção à vida aquática (EPA, 1972).

A função de um ecossistema pode ser resumida em dois níveis inter-relacionados e em equilíbrio: trofia e saprobia. O aporte de nutrientes minerais decorrente do uso de fertilizantes na agricultura interfere neste equilíbrio, aumentando a trofia e resultando em eutrofização (SCHÄFER, 1985). Os componentes minerais de fósforo e nitrogênio constituem os elementos mais importantes e são considerados como os fatores principais de eutrofização (VIVIER, 1979). As médias anuais de fósforo total encontradas nos seis pontos de coleta foram relativamente altas (média 87,5 ug/l), ultrapassando o padrão permitido pela resolução nº 20 do CONAMA (BRASIL, 1986). A composição média de águas fluviadas da América do Sul apresenta um valor de 0,7 mg/l de nitrito (WETZEL, 1983). No arroio Velhaco as concentrações médias foram bem inferiores (média 0,13 mg/l).

De maneira geral, o arroio Velhaco apresenta as mesmas tendências do perfil longitudinal hipotético de um corpo de água lótico, mas a variabilidade é pequena e o ponto de inflexão da curva é de difícil visualização (Fig. 6). Além disso, alguns pontos fogem a esta tendência, apresentando comportamentos anômalos, que podem estar relacionados ao uso de práticas agrícolas inadequadas.

O dendograma de similaridade com base nas características morfológicas, físicas e químicas separa os locais de amostragem em três grupos (Fig. 7): o primeiro está representado pelas estações do trecho superior e pode ser denominado ritral; o segundo constitui-se das estações localizadas na região de várzea, caracterizando uma zona de transição; e o último é representado pela foz do arroio e apresenta características de potamal.

As modificações que ocorrem nos sistemas aquáticos, sejam decorrentes de causas naturais ou antropogênicas, resultam em modificações na estrutura das biocenoses. O estudo das comunidades assume, então, um significado importante na realização de diagnósticos ambientais. Segundo HUECK (1976), os organismos que melhor refletem a qualidade da água em ambientes lóticos são aqueles cuja capacidade de locomoção é limitada, representados pela fauna bentônica.
<table>
<thead>
<tr>
<th>Pontos</th>
<th>Min</th>
<th>Máx</th>
<th>Méd</th>
<th>Des</th>
<th>Min</th>
<th>Máx</th>
<th>Méd</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>12.0</td>
<td>27.0</td>
<td>19.5</td>
<td>4.2</td>
<td>7.4</td>
<td>11.7</td>
<td>9.1</td>
<td>1.0</td>
</tr>
<tr>
<td>V2</td>
<td>12.0</td>
<td>24.6</td>
<td>18.5</td>
<td>3.7</td>
<td>6.7</td>
<td>10.4</td>
<td>8.7</td>
<td>1.0</td>
</tr>
<tr>
<td>V3</td>
<td>11.0</td>
<td>24.2</td>
<td>18.1</td>
<td>3.6</td>
<td>6.0</td>
<td>11.6</td>
<td>9.0</td>
<td>1.5</td>
</tr>
<tr>
<td>V4</td>
<td>12.0</td>
<td>25.0</td>
<td>18.7</td>
<td>4.2</td>
<td>6.0</td>
<td>9.8</td>
<td>8.3</td>
<td>1.1</td>
</tr>
<tr>
<td>V5</td>
<td>11.5</td>
<td>28.0</td>
<td>19.7</td>
<td>5.5</td>
<td>5.9</td>
<td>10.7</td>
<td>8.3</td>
<td>1.5</td>
</tr>
<tr>
<td>V6</td>
<td>11.0</td>
<td>28.0</td>
<td>19.8</td>
<td>5.3</td>
<td>6.2</td>
<td>9.3</td>
<td>7.8</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Oxigênio dissolvido (mg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>92.6</td>
<td>108.7</td>
<td>97.5</td>
<td>4.3</td>
<td>0.0</td>
<td>4.4</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>V2</td>
<td>77.4</td>
<td>103.3</td>
<td>92.0</td>
<td>7.0</td>
<td>0.0</td>
<td>3.0</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>V3</td>
<td>67.6</td>
<td>122.7</td>
<td>94.8</td>
<td>11.8</td>
<td>0.8</td>
<td>2.6</td>
<td>1.7</td>
<td>0.7</td>
</tr>
<tr>
<td>V4</td>
<td>69.9</td>
<td>101.5</td>
<td>88.9</td>
<td>8.5</td>
<td>0.6</td>
<td>5.8</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>V5</td>
<td>69.6</td>
<td>104.0</td>
<td>88.9</td>
<td>9.3</td>
<td>0.0</td>
<td>4.2</td>
<td>1.8</td>
<td>1.2</td>
</tr>
<tr>
<td>V6</td>
<td>74.2</td>
<td>95.2</td>
<td>84.7</td>
<td>6.3</td>
<td>0.6</td>
<td>3.9</td>
<td>2.1</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Saturação de O₂ (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.6</td>
<td>32.0</td>
<td>13.4</td>
<td>8.0</td>
<td>52.2</td>
<td>68.2</td>
<td>61.4</td>
<td>4.4</td>
</tr>
<tr>
<td>V2</td>
<td>3.2</td>
<td>32.9</td>
<td>16.0</td>
<td>10.2</td>
<td>49.0</td>
<td>76.2</td>
<td>62.8</td>
<td>8.2</td>
</tr>
<tr>
<td>V3</td>
<td>6.2</td>
<td>30.4</td>
<td>15.2</td>
<td>8.8</td>
<td>54.7</td>
<td>76.2</td>
<td>63.8</td>
<td>5.9</td>
</tr>
<tr>
<td>V4</td>
<td>7.7</td>
<td>44.8</td>
<td>20.3</td>
<td>10.8</td>
<td>54.5</td>
<td>71.8</td>
<td>62.6</td>
<td>5.7</td>
</tr>
<tr>
<td>V5</td>
<td>4.6</td>
<td>33.6</td>
<td>20.6</td>
<td>8.5</td>
<td>48.4</td>
<td>89.3</td>
<td>66.0</td>
<td>10.9</td>
</tr>
<tr>
<td>V6</td>
<td>4.7</td>
<td>36.8</td>
<td>22.0</td>
<td>9.6</td>
<td>39.0</td>
<td>152.0</td>
<td>69.0</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>DQO (mg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
<td>3.4</td>
<td>58.6</td>
<td>76.5</td>
<td>15.5</td>
</tr>
<tr>
<td>V2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
<td>3.2</td>
<td>57.0</td>
<td>19.9</td>
<td>15.2</td>
</tr>
<tr>
<td>V3</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>4.5</td>
<td>54.8</td>
<td>18.9</td>
<td>13.9</td>
</tr>
<tr>
<td>V4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>8.0</td>
<td>63.2</td>
<td>22.3</td>
<td>15.9</td>
</tr>
<tr>
<td>V5</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
<td>2.2</td>
<td>65.7</td>
<td>25.0</td>
<td>16.5</td>
</tr>
<tr>
<td>V6</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
<td>15.7</td>
<td>68.3</td>
<td>29.9</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>Condutividade (µS/cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>151.8</td>
<td>79.3</td>
<td>49.3</td>
<td>0.06</td>
<td>0.13</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>V2</td>
<td>16.7</td>
<td>214.8</td>
<td>85.2</td>
<td>64.3</td>
<td>0.08</td>
<td>0.13</td>
<td>0.11</td>
<td>0.02</td>
</tr>
<tr>
<td>V3</td>
<td>18.5</td>
<td>151.8</td>
<td>69.5</td>
<td>49.1</td>
<td>0.08</td>
<td>0.13</td>
<td>0.11</td>
<td>0.02</td>
</tr>
<tr>
<td>V4</td>
<td>18.5</td>
<td>1219.6</td>
<td>99.7</td>
<td>71.0</td>
<td>0.06</td>
<td>0.20</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>V5</td>
<td>11.1</td>
<td>175.9</td>
<td>84.0</td>
<td>49.4</td>
<td>0.08</td>
<td>0.17</td>
<td>0.13</td>
<td>0.03</td>
</tr>
<tr>
<td>V6</td>
<td>27.8</td>
<td>338.9</td>
<td>107.4</td>
<td>88.9</td>
<td>0.11</td>
<td>0.27</td>
<td>0.18</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Min = valor mínimo; Máx = valor máximo; Méd = média anual; Des = desvio padrão
Figura 6 - Perfil longitudinal hipotético de um corpo de água lótico (segundo (SCHÄFER, 1985) e perfis longitudinalis das características físicas e químicas da água do arroio Velhaco (médias anuais e desvio padrão).
Os organismos bentônicos encontrados no arroio Velhaco estão relacionados na tabela II. A fauna, de maneira geral, é pobre, tanto em densidade como em diversidade. Encontram-se principalmente larvas de insetos, sendo as ordens Diptera e Trichoptera as mais abundantes, representando 80,7% de todos os indivíduos coletados. Os moluscos são raramente encontrados, a exceção da foz, e as espécies identificadas são as seguintes: Ampullaria canaliculata, Corbicula manilensis, Diplodon sp., Erodona mactroides, Gundlichia moricandi, Heleobia sp., Pisidium sp. e Potamolithus ribeirensis.

Os pontos de coleta foram agrupados conforme a similaridade da configuração da fauna bentônica, mostrando dois grupos principais, um na região superior e outro na região inferior. A baixa densidade e a restrita possibilidade de determinação a nível específico do material disponível não permitem uma maior diferenciação dos pontos de amostragem.

Vários ictiólogos desenvolveram sistemas de classificação de rios em zonas, baseados nas espécies de peixes dominantes e outras espécies associadas (HAWKES, 1975, HENDRICKS et al., 1980).

A tabela III mostra as espécies de peixes capturadas no arroio Velhaco, totalizando 41 espécies. O local de amostragem que apresentou maior abundância e número de espécies foi o V5, representando 57,3% do total de indivíduos.

No dendrograma baseado na similaridade da composição da ictiofauna pode-se observar dois agrupamentos principais dos locais de amostragem, diferenciando os cursos superior e inferior (Fig. 7). A formação destes grupos coincide com as encontradas nos outros dois dendrogramas. Esta constatação mostra que a análise de similaridade é uma boa perspectiva para a definição de critérios biológicos aplicáveis na complementação de análises químicas e físicas.

Tabela II: Macrozoobentos do Arroio Velhaco

<table>
<thead>
<tr>
<th>Local de amostragem</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>Número de indivíduos</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nemertinea</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Branchiura</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Hydropsychida</td>
<td>5</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>20</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Scolopendra</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Ephemeropera</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>13</td>
<td>4</td>
<td>20</td>
<td>30</td>
<td>25</td>
<td>3</td>
<td>95</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>17</td>
<td>8</td>
<td>13</td>
<td>33</td>
<td>94</td>
<td>40</td>
<td>205</td>
<td>55.1</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>372</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Local de amostragem</td>
<td>V1</td>
<td>V2</td>
<td>V3</td>
<td>V4</td>
<td>V5</td>
<td>V6</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequentes (> 5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspianax bicirratus</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>32</td>
<td>185</td>
<td>44</td>
<td>280</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td>Breconamericus ishingii</td>
<td>7</td>
<td>68</td>
<td>7</td>
<td>15</td>
<td>89</td>
<td>5</td>
<td>186</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>Cheirodon sp</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>117</td>
<td>5</td>
<td>144</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Hyphessobrycon luciferi</td>
<td>45</td>
<td>34</td>
<td>8</td>
<td>17</td>
<td>39</td>
<td>1</td>
<td>144</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Astatius haeusleri</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>85</td>
<td>31</td>
<td>12</td>
<td>136</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Gymnogeophagus gymnogenes</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>101</td>
<td>12</td>
<td>136</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Miscionals (1 - 5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspianax cadiene</td>
<td>3</td>
<td>21</td>
<td>4</td>
<td>18</td>
<td>32</td>
<td>5</td>
<td>78</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>Astatius sp</td>
<td>13</td>
<td>2</td>
<td>59</td>
<td>74</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astroloricaria strigilata</td>
<td>5</td>
<td>61</td>
<td>1</td>
<td>67</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characium sp</td>
<td>2</td>
<td>28</td>
<td>1</td>
<td>31</td>
<td>64</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudohycroponoma doriae</td>
<td>8</td>
<td>4</td>
<td>17</td>
<td>2</td>
<td>63</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudolalea laticeps</td>
<td>4</td>
<td>3</td>
<td>41</td>
<td>48</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspianax eigenmannianus</td>
<td>6</td>
<td>4</td>
<td>12</td>
<td>6</td>
<td>28</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodonax paleatus</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>21</td>
<td>27</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspianax fasciatus</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>21</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microlepidaeather sp</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontesthes sp</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raros (< 1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophagus brasilensis</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>13</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypostomus sp</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>64</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janyssia lineata</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodonax silberti</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotiformis bonomassutus</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotum</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotus inequalis</td>
<td>7</td>
<td>7</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotus schneideli</td>
<td>6</td>
<td>6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimagoniates inequalis</td>
<td>6</td>
<td>6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheirodon interruptus</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyphessobrycon bifasciatu</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asplomichthys sienopretus</td>
<td>3</td>
<td>3</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loricichthys anus</td>
<td>3</td>
<td>3</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligosarcus robustus</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunocephaus ishingii</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cichlasoma faciunculum</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancistrus sp</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenichthia lacustris</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenichthia leptodora</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodonax silberti</td>
<td>2</td>
<td>2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoplias malabaricus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jobertina theagryi</td>
<td>2</td>
<td>2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monodactylus sp</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimelodus maculatus</td>
<td>2</td>
<td>2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>112</td>
<td>242</td>
<td>71</td>
<td>125</td>
<td>952</td>
<td>158</td>
<td>1660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>7</td>
<td>15</td>
<td>4</td>
<td>8</td>
<td>57</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de espécies</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>27</td>
<td>19</td>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
saprobiidade. A vantagem deste método é a possibilidade de aplicações parciais, mesmo não havendo disponibilidade de todas as informações. PINEDA & SCHAFFER (1987) adaptaram este método para possibilitar o uso do balanço de oxigênio como critério de avaliação do rio Gravatá, um rio de planícies com grande influência de despejos urbanos.

Das 84 análises de oxigênio dissolvido realizadas no arroio Velhaco, apenas uma ultrapassou o padrão recomendado para classe I, segundo normas do CONAMA (Brasil, 1986). O arroio foi classificado segundo o déficit de oxigênio (PINEDA & SCHAFFER, 1987) como classe I em toda sua extensão, a não ser na situação mais crítica, onde o trecho superior apresentou-se como classe I e o trecho inferior como classe II.

Os perfis diários complementam as informações instantâneas das medições químicas. As concentrações de oxigênio dissolvido medidas no arroio Velhaco durante o verão apresentaram uma variação de 55,3 a 81,9%, e durante o inverno foram maiores, oscilando entre 88,3 e 91,1% de saturação. Segundo SCHAFFER et al. (1980), quanto maior a intensidade dos processos de produção e consumo da biocenose, maior a variação diária da concentração de oxigênio. A pequena amplitud diária encontrada na época de cheia (3%) demonstra ser a difusão o fator que determina o alto grau de saturação, sem haver participação notável dos fatores produção e consumo.

SCHMASSMANN (1951) diferencia 4 tipos de curvas diárias, representando diferentes níveis de enriquecimento com substâncias orgânicas: rios abióticos; rios não poluídos, oligotróficos; rios moderadamente poluídos e rios fortemente poluídos. Estas curvas sofrem modificações na dependência das condições hidrológicas. Um rio não poluído apresenta uma condição intermediária entre os primeiros dois tipos no rítmico e entre o segundo e o terceiro tipo no Potamal (SCHAFFER, 1985). A curva diária de saturação de oxigênio do arroio Velhaco obtida no inverno apresentou uma situação intermediária entre os primeiros dois tipos de curvas, não mostrando sinais de poluição. Já a curva obtida no verão está classificada entre o segundo e terceiro tipo, indicando a probabilidade de algum processo poluidor. Os perfis diários foram classificados segundo o déficit de oxigênio (PINEDA & SCHAFFER, 1987). O perfil de inverno foi identificado como classe I e o de verão mostrou maior variação, desde classe I até classe III.

O uso da saturação de oxigênio como único critério de classificação não é suficiente para avaliar a sobrecarga de um rio em regiões hidrográficas diferentes. Em rios de muita corrente, a saturação não representa suficientemente a intensidade dos processos de consumo. A inclusão da DBO₅ equilibra os efeitos hidrodinâmicos (PINEDA & SCHAFFER, 1987).

Das análises de DBO₅ realizadas no arroio Velhaco, aproximadamente 8% ultrapassou o padrão estabelecido para classe I e 2% superou a classe 2, segundo as normas do CONAMA (Brasil, 1986). Foram estabelecidas classes de qualidade da água do arroio Velhaco segundo o consumo de oxigênio (PINEDA & SCHAFFER, 1987). As médias, tanto anuais como dos períodos de cheia e estiagem, foram identificadas como classe II, o valor mínimo era classificado como classe I ora como classe II e o valor máximo como classe II ou III.

Em rios de planicie, com baixa velocidade e temperaturas mais elevadas, a avaliação pelo déficit de oxigênio é um critério satisfatório quando a poluição orgânica é moderada; nos casos de alta poluição, faz-se necessária a inclusão da DBO₅ (PINEDA & SCHAFFER, 1987). No arroio Velhaco, típico de região montanhosa, com alta velocidade, temperaturas mais baixas e pouca influência da poluição orgânica, isto não ocorre, ou seja, a DBO₅ tem um efeito nitidamente reparador (Tab. IV) também em áreas pouco afetadas por enriquecimento com substâncias orgânicas.

A síntese das diferentes abordagens discutidas no estudo do arroio Velhaco está representada na figura 7.
Tabela IV: Comparação entre a avaliação da qualidade da água do Arroio Velhaco baseada no déficit de oxigênio (DO) e no consumo de oxigênio (DBO₅) segundo classificação proposta por PINEDA & SCHAFER (1987)

<table>
<thead>
<tr>
<th>DO / DBO₅</th>
<th>Classes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor mínimo</td>
<td>I</td>
</tr>
<tr>
<td>Média de cheia</td>
<td>I</td>
</tr>
<tr>
<td>Média anual</td>
<td>I</td>
</tr>
<tr>
<td>Média de estiagem</td>
<td>I</td>
</tr>
<tr>
<td>Valor máximo</td>
<td>I-II</td>
</tr>
</tbody>
</table>

Figura 7 - Síntese dos principais resultados do estudo ecológico do arroio Velhaco: Bio = dendrograma da similaridade da ictiofauna (índice de distância taxonômica); CQ-DO: classes de qualidade segundo o déficit de O₂; CQ-DBO: classes de qualidade segundo o DBO₅; MFQ: dendrograma de similaridade segundo características morfológicas, físicas e químicas (distância euclidiana); ZE = zoneamento ecológico.
Conclusões

A classificação do arroio Velhaco segundo o déficit de oxigênio (classe I) difere da obtida através do consumo de oxigênio (classe II), mostrando que, em arroios bastante acrados mecânicamente, a saturação de oxigênio não é um critério satisfatório para interpretar a intensidade dos processos de consumo.

As classes de qualidade observadas ao longo do arroio mostram uniformidade desde as nascentes até a foz. Já no zoneamento ecológico baseado nas características morfológicas, físico-químicas e biológicas observa-se a existência de três zonas com características próprias: rital, transição e potamal. Trata-se de duas interpretações com objetivos diferentes: a primeira visa a classificação dos corpos hídricos em função do uso da água pelo homem e a segunda procura conhecer a estrutura e funcionamento do ecossistema como um todo. O significado ecológico das alterações induzidas por um mesmo impacto ambiental varia em dependência da zonação ecológica, ressaltando a importância de se conhecer as variações naturais para interpretar corretamente os efeitos poluidores, dentro de uma ótica de planejamento e manejo dos recursos hídricos.

Referências bibliográficas

Endereço dos autores

HAASE, J.

SCHAFER, A.
Universidade Federal do Rio Grande do Sul, Centro de Estudos Costeiros Limnológicos e Nudos, A. Paulo Gama s/n, 90040, Porto Alegre-RS.